论文标题

部分可观测时空混沌系统的无模型预测

On the volume of the Minkowski sum of zonoids

论文作者

Fradelizi, Matthieu, Madiman, Mokshay, Meyer, Mathieu, Zvavitch, Artem

论文摘要

我们探索限制在派系类别的凸几何形状中的一些不等式。我们显示了在众多的宗教团体中,在局部Alexandrov-fenchel不平等,局部Loomis-Whitney不平等,体积的对数 - 模块化和Dembo-Cover-Thomas cosienture of Voluge与表面积的比率的单调性。除这些等价外,我们还以$ {\ Mathbb r}^3 $确认这些猜想,并在$ {\ Mathbb r^2} $中建立了改进的不平等。在此过程中,我们对亚当·马库斯(Adam Marcus)的问题给出了否定的答案,该问题涉及斯坦纳(Steiner)多项式的根源。我们还研究了$ L_P $ -BRUNN-MINKOWSKI理论中的类似问题,尤其是,我们在任何维度上确认了上述所有猜想$ p = 2 $。

We explore some inequalities in convex geometry restricted to the class of zonoids. We show the equivalence, in the class of zonoids, between a local Alexandrov-Fenchel inequality, a local Loomis-Whitney inequality, the log-submodularity of volume, and the Dembo-Cover-Thomas conjecture on the monotonicity of the ratio of volume to the surface area. In addition to these equivalences, we confirm these conjectures in ${\mathbb R}^3$ and we establish an improved inequality in ${\mathbb R^2}$. Along the way, we give a negative answer to a question of Adam Marcus regarding the roots of the Steiner polynomial of zonoids. We also investigate analogous questions in the $L_p$-Brunn-Minkowski theory, and in particular, we confirm all of the above conjectures in the case $p=2$, in any dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源