论文标题

完全持久的空间数据结构,以在路径依赖运动计划应用中有效查询

Fully Persistent Spatial Data Structures for Efficient Queries in Path-Dependent Motion Planning Applications

论文作者

Karnik, Sathwik, Lozano-Pérez, Tomás, Kaelbling, Leslie Pack, Goretkin, Gustavo Nunes

论文摘要

运动计划是一个普遍存在的问题,通常是机器人应用中的瓶颈。我们证明了运动计划问题,例如最小约束删除,信仰空间计划和可见性感知运动计划(VAMP)受到路径依赖的公式的好处,在该公式中,搜索节点处的状态由该节点的路径隐含地表示。在这种依赖路径依赖性公式中计算后继节点的可行性的幼稚方法需要在路径长度到节点的时间线性,与(可能很大)恒定时间(可能很大)恒定时间用于更典型的搜索公式。对于长马计划,执行此线性时间计算,我们称之为回顾,因为每个节点都变得过于敏锐。为了改善这一点,我们介绍了完全持久的空间数据结构(FPSD)的使用,该空间数据结构(FPSD)界定了回顾大的大小。然后,我们专注于FPSD在VAMP中的应用,这涉及增量几何计算,可以通过使用最近邻居数据结构对边界量进行过滤配置来加速。我们在几个说明性域中找到鞋面解决方案的运行时表现出了渐近和实际的改进。据我们所知,这是首次使用完全持久的数据结构来加速运动计划。

Motion planning is a ubiquitous problem that is often a bottleneck in robotic applications. We demonstrate that motion planning problems such as minimum constraint removal, belief-space planning, and visibility-aware motion planning (VAMP) benefit from a path-dependent formulation, in which the state at a search node is represented implicitly by the path to that node. A naive approach to computing the feasibility of a successor node in such a path-dependent formulation takes time linear in the path length to the node, in contrast to a (possibly very large) constant time for a more typical search formulation. For long-horizon plans, performing this linear-time computation, which we call the lookback, for each node becomes prohibitive. To improve upon this, we introduce the use of a fully persistent spatial data structure (FPSDS), which bounds the size of the lookback. We then focus on the application of the FPSDS in VAMP, which involves incremental geometric computations that can be accelerated by filtering configurations with bounding volumes using nearest-neighbor data structures. We demonstrate an asymptotic and practical improvement in the runtime of finding VAMP solutions in several illustrative domains. To the best of our knowledge, this is the first use of a fully persistent data structure for accelerating motion planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源