论文标题

WHU-STEREO:高分辨率卫星图像立体声匹配的具有挑战性的基准

WHU-Stereo: A Challenging Benchmark for Stereo Matching of High-Resolution Satellite Images

论文作者

Li, Shenhong, He, Sheng, Jiang, San, Jiang, Wanshou, Zhang, Lin

论文摘要

高分辨率卫星图像(HRSI)的立体声匹配仍然是摄影测量和遥感领域的基本但具有挑战性的任务。最近,深度学习(DL)方法,尤其是卷积神经网络(CNN),在公共基准数据集上显示出巨大的立体声匹配潜力。但是,卫星图像的立体声匹配数据集很少。为了促进进一步的研究,本文创建并发布了一个具有挑战性的数据集,称为Whu-Stereo,用于立体声匹配DL网络培训和测试。该数据集是通过使用空气传播点云和从中国Gaofen-7卫星(GF-7)获取的高分辨率立体成像来创建的。 WHU-STEREO数据集包含1700多个对抗整流图像对,其中涵盖了中国的六个区域,其中包括各种景观。我们已经评估了地面差异图的准确性,并且证明我们的数据集与现有最新立体声匹配数据集相比具有可比的精度。为了验证其可行性,在实验中,在WHU-STEREO数据集上测试了手工制作的SGM立体声匹配算法和最近的深度学习网络。实验结果表明,与手工制作的SGM算法相比,深度学习网络可以经过良好的训练和更高的性能,并且该数据集在遥感应用程序中具有巨大的潜力。 WHU-STEREO数据集可以作为高分辨率卫星图像的立体匹配以及深度学习模型的性能评估的具有挑战性的基准。我们的数据集可从https://github.com/sheng029/whu-stereo获得

Stereo matching of high-resolution satellite images (HRSI) is still a fundamental but challenging task in the field of photogrammetry and remote sensing. Recently, deep learning (DL) methods, especially convolutional neural networks (CNNs), have demonstrated tremendous potential for stereo matching on public benchmark datasets. However, datasets for stereo matching of satellite images are scarce. To facilitate further research, this paper creates and publishes a challenging dataset, termed WHU-Stereo, for stereo matching DL network training and testing. This dataset is created by using airborne LiDAR point clouds and high-resolution stereo imageries taken from the Chinese GaoFen-7 satellite (GF-7). The WHU-Stereo dataset contains more than 1700 epipolar rectified image pairs, which cover six areas in China and includes various kinds of landscapes. We have assessed the accuracy of ground-truth disparity maps, and it is proved that our dataset achieves comparable precision compared with existing state-of-the-art stereo matching datasets. To verify its feasibility, in experiments, the hand-crafted SGM stereo matching algorithm and recent deep learning networks have been tested on the WHU-Stereo dataset. Experimental results show that deep learning networks can be well trained and achieves higher performance than hand-crafted SGM algorithm, and the dataset has great potential in remote sensing application. The WHU-Stereo dataset can serve as a challenging benchmark for stereo matching of high-resolution satellite images, and performance evaluation of deep learning models. Our dataset is available at https://github.com/Sheng029/WHU-Stereo

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源