论文标题

将舞者绑定到吸引者

Binding Dancers Into Attractors

论文作者

Kaltenberger, Franziska, Otte, Sebastian, Butz, Martin V.

论文摘要

为了有效地感知和过程在我们的环境中进行观察,特征结合和观点的采取是至关重要的认知能力。特征绑定将观察到的特征组合为一个称为格式塔的实体。视角将感知转移到一个以观察者为中心的参考框架中。在这里,我们提出了一个复发性神经网络模型,该模型解决了这两个挑战。我们首先训练LSTM从规范的角度预测3D运动动力学。然后,我们提出具有新颖的观点和特征布置的类似运动动力学。回顾性推论可以推论规范的观点。结合强大的相互排放的软性选择方案,随机特征布置被重新排序,并精确地结合到已知的格式塔感知中。为了证实该体系结构的认知有效性的证据,我们研究了其对轮廓幻觉的行为,这引起了旋转舞者的两种竞争性格式塔解释。我们的系统灵活地将旋转图的信息绑定到解决幻觉的歧义并想象各自的深度解释和相应旋转方向的替代吸引力中。我们最终讨论了提出机制的潜在普遍性。

To effectively perceive and process observations in our environment, feature binding and perspective taking are crucial cognitive abilities. Feature binding combines observed features into one entity, called a Gestalt. Perspective taking transfers the percept into a canonical, observer-centered frame of reference. Here we propose a recurrent neural network model that solves both challenges. We first train an LSTM to predict 3D motion dynamics from a canonical perspective. We then present similar motion dynamics with novel viewpoints and feature arrangements. Retrospective inference enables the deduction of the canonical perspective. Combined with a robust mutual-exclusive softmax selection scheme, random feature arrangements are reordered and precisely bound into known Gestalt percepts. To corroborate evidence for the architecture's cognitive validity, we examine its behavior on the silhouette illusion, which elicits two competitive Gestalt interpretations of a rotating dancer. Our system flexibly binds the information of the rotating figure into the alternative attractors resolving the illusion's ambiguity and imagining the respective depth interpretation and the corresponding direction of rotation. We finally discuss the potential universality of the proposed mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源