论文标题

二维纳米流体通道中的相互作用限制和电子筛选

Interaction confinement and electronic screening in two-dimensional nanofluidic channels

论文作者

Kavokine, Nikita, Robin, Paul, Bocquet, Lydéric

论文摘要

纳米级的流体运输至关重要,从神经传递到超滤范围。然而,直到最近,横截面较小的横截面良好的通道才成为实验现实。当水解物被限制在此类通道内时,由于通道壁上的介电对比,溶解离子之间的库仑相互作用会得到加固:我们将这种效应“相互作用约束”配音。然而,除了完全金属或完美绝缘通道墙的限制情况外,没有提出任何系统计算这些狭窄相互作用的方法。在这里,我们基于所谓的表面响应函数介绍了一种新的形式主义,该形式主义表达了二维通道内有效的库仑相互作用,该相互作用以墙壁的电子结构为角度,描述为任何所需的精度水平。我们使用它来证明,在几纳米范围内的通道中,可以通过壁材料的筛选长度来调整离子相互作用。我们通过在强限制电解质的布朗动力学模拟中实现这些相互作用来说明这种方法,并表明可以在欧姆定律和维也纳效应行为之间调整所得离子传导。我们的结果提供了一种定量方法,可通过通道壁材料的电子性质调整纳米级离子传输。

The transport of fluids at the nanoscale is fundamental to manifold biological and industrial processes, ranging from neurotransmission to ultrafiltration. Yet, it is only recently that well-controlled channels with cross-sections as small as a few molecular diameters became an experimental reality. When aqueous electrolytes are confined within such channels, the Coulomb interactions between the dissolved ions are reinforced due to dielectric contrast at the channel walls: we dub this effect `interaction confinement'. Yet, no systematic way of computing these confined interactions has been proposed beyond the limiting cases of perfectly metallic or perfectly insulating channel walls. Here, we introduce a new formalism, based on the so-called surface response functions, that expresses the effective Coulomb interactions within a two-dimensional channel in terms of the wall's electronic structure, described to any desired level of precision. We use it to demonstrate that in few-nanometer-wide channels, the ionic interactions can be tuned by the wall material's screening length. We illustrate this approach by implementing these interactions in brownian dynamics simulations of a strongly confined electrolyte, and show that the resulting ionic conduction can be adjusted between Ohm's law and a Wien effect behavior. Our results provide a quantitative approach to tuning nanoscale ion transport through the electronic properties of the channel wall material.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源