论文标题
LQG差异stackelberg游戏在嵌套观察信息模式下
LQG Differential Stackelberg Game under Nested Observation Information Pattern
论文作者
论文摘要
我们在一类嵌套的观察信息模式下研究了线性二次高斯stackelberg游戏。两个决策者实施依靠不同信息集的控制策略:追随者使用其观察数据来设计其策略,而领导者则使用全球观察数据实施其策略。我们表明,该解决方案需要求解一种新型的前向后随机微分方程,其漂移项包含与伴随变量相关的两种类型的条件期望项。然后,我们提出了一种方法,以找到每个伴随对之间的功能关系,即由伴随变量形成的每个对以及其相关状态的条件期望。提出的方法遵循分层模式。更确切地说,在内层中,我们在追随者的观察信息产生的sigma-sub-orgebra下寻求伴随对的功能关系;在外层中,我们在领导者的观察信息产生的sigma-sub-orgebra下寻找伴随对的功能关系。我们的结果表明,最佳开环解决方案允许明确的反馈类型表示。更确切地说,反馈系数矩阵满足了耦合前后差异riccati方程的元素,并且反馈变量通过Kalman-Bucy滤波计算。
We investigate the linear quadratic Gaussian Stackelberg game under a class of nested observation information pattern. Two decision makers implement control strategies relying on different information sets: The follower uses its observation data to design its strategy, whereas the leader implements its strategy using global observation data. We show that the solution requires solving a new type of forward-backward stochastic differential equations whose drift terms contain two types of conditional expectation terms associated to the adjoint variables. We then propose a method to find the functional relations between each adjoint pair, i.e., each pair formed by an adjoint variable and the conditional expectation of its associated state. The proposed method follows a layered pattern. More precisely, in the inner layer, we seek the functional relation for the adjoint pair under the sigma-sub-algebra generated by follower's observation information; and in the outer layer, we look for the functional relation for the adjoint pair under the sigma-sub-algebra generated by leader's observation information. Our result shows that the optimal open-loop solution admits an explicit feedback type representation. More precisely, the feedback coefficient matrices satisfy tuples of coupled forward-backward differential Riccati equations, and feedback variables are computed by Kalman-Bucy filtering.