论文标题
环境崩溃模型
Environmental Collapse Models
论文作者
论文摘要
我们提出了动态塌陷模型,其中随机塌陷项仅影响光子和/或重力。原则上,仅包含大量颗粒的孤立系统可以在此类模型中无限期地演变。实际上,由于光子和重力无处不在,并且从巨大的颗粒中散射,因此前者的动态崩溃将有效地诱导后者的崩溃。在保守粒子数并通过经典电势建模的非相关模型中,可以将大规模系统建模为基本质量颗粒的集合,由电势结合,与光子和重力的环境相互作用。在这张照片中,尽管光子和/或重力量塌陷动力学有效地定位了巨大的系统,但这些崩溃采用了对巨大系统影响的环境的有效形式。我们认为,这些环境崩溃模型,例如标准质量依赖性的自发定位模型,可能与微观系统上的量子实验一致,同时预测了宏观巨大质量大型系统的非常快速的有效崩溃,从而解决了量子测量问题的潜在解决方案。但是,这里考虑的模型具有与标准质量依赖性自发定位模型不同的实验特征。例如,他们没有预测从分离的环境中分离出的巨大颗粒的介观系统与标准量子干涉率的偏差,也无法预测通过标准质量依赖性的自发性定位模型从分离的类型预测中的孤立物质中辐射的异常自发发射。需要进行新的实验和分析,以获得模型中的分解率的经验界限。
We propose dynamical collapse models in which the stochastic collapse terms affect only photons and/or gravitons. In principle, isolated systems comprising only massive particles could evolve unitarily indefinitely in such models. In practice, since photons and gravitons are ubiquitous and scatter from massive particles, dynamical collapses of the former will effectively induce collapses of the latter. In non-relativistic models in which particle number is conserved and interactions are modelled by classical potentials, massive systems can be modelled as collections of elementary massive particles bound by potentials, interacting with an environment of photons and gravitons. In this picture, although the photon and/or graviton collapse dynamics effectively localize massive systems, these collapses take the effective form of approximate measurements on the environment whose effect on the massive systems is indirect. We argue that these environmental collapse models, like standard mass-dependent spontaneous localisation models, may be consistent with quantum experiments on microscopic systems while predicting very rapid effective collapse of macroscopic massive systems, and hence a potential solution to the quantum measurement problem. However, the models considered here have different experimental signatures from standard mass-dependent spontaneous localisation models. For example, they predict no deviations from standard quantum interferometry for mesoscopic systems of massive particles isolated from a decohering environment, nor do they predict anomalous spontaneous emission of radiation from isolated matter of the type prediction by standard mass-dependent spontaneous localization models. New experiments and analyses are required to obtain empirical bounds on the decoherence rate in our models.