论文标题

解释转移的物理学学习数据驱动的亚网格尺度闭合到不同的湍流

Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow

论文作者

Subel, Adam, Guan, Yifei, Chattopadhyay, Ashesh, Hassanzadeh, Pedram

论文摘要

转移学习(TL)已成为神经网络(NNS)的科学应用中的强大工具,例如天气/气候预测和湍流建模。 TL可以实现分布式概括(例如,参数中的外推)和有效的不同训练集(例如,模拟和观察结果)的有效混合。在TL中,使用目标系统的小数据集对已经训练的基础系统进行了训练的NN的选定层。对于有效的TL,我们需要知道1)重新培训的最佳层是什么? 2)在TL期间学到了哪些物理学?在这里,我们提出了新的分析和一个新的框架,以解决(1) - (2)的多种多数非线性系统。我们的方法将系统数据的光谱分析与卷积NN激活和内核的光谱分析相结合,从系统的非线性物理学来解释了TL的内部工作。使用二维湍流的几个设置作为测试用例的亚网格规模建模,我们表明学习的内核是低,带和高通滤波器的组合,并且TL学习了新的过滤器,其性质与基础和目标系统的光谱差异一致。我们还发现,在这些情况下,最浅层层是重新培训的最佳层,这违背了机器学习文献中指导TL的共同智慧。我们的框架根据物理和NN理论确定了事先重新训练的最佳层。这些分析共同解释了在TL中学习的物理学,并提供了一个框架,以指导TL,以用于在科学和工程中的广泛应用,例如气候变化建模。

Transfer learning (TL) is becoming a powerful tool in scientific applications of neural networks (NNs), such as weather/climate prediction and turbulence modeling. TL enables out-of-distribution generalization (e.g., extrapolation in parameters) and effective blending of disparate training sets (e.g., simulations and observations). In TL, selected layers of a NN, already trained for a base system, are re-trained using a small dataset from a target system. For effective TL, we need to know 1) what are the best layers to re-train? and 2) what physics are learned during TL? Here, we present novel analyses and a new framework to address (1)-(2) for a broad range of multi-scale, nonlinear systems. Our approach combines spectral analyses of the systems' data with spectral analyses of convolutional NN's activations and kernels, explaining the inner-workings of TL in terms of the system's nonlinear physics. Using subgrid-scale modeling of several setups of 2D turbulence as test cases, we show that the learned kernels are combinations of low-, band-, and high-pass filters, and that TL learns new filters whose nature is consistent with the spectral differences of base and target systems. We also find the shallowest layers are the best to re-train in these cases, which is against the common wisdom guiding TL in machine learning literature. Our framework identifies the best layer(s) to re-train beforehand, based on physics and NN theory. Together, these analyses explain the physics learned in TL and provide a framework to guide TL for wide-ranging applications in science and engineering, such as climate change modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源