论文标题

空间时间图学习的自适应联合相关框架

An Adaptive Federated Relevance Framework for Spatial Temporal Graph Learning

论文作者

Zhang, Tiehua, Liu, Yuze, Shen, Zhishu, Xu, Rui, Chen, Xin, Huang, Xiaowei, Zheng, Xi

论文摘要

时空数据包含丰富的信息,并且由于许多领域的相关应用程序的快速发展,近年来已广泛研究。例如,医疗机构经常使用与患者不同部位相关的电极来分析富含空间和时间特征的脑外数据,以进行健康评估和疾病诊断。现有的研究主要使用了深度学习技术,例如卷积神经网络(CNN)或经常性神经网络(RNN)来提取隐藏的时空特征。然而,同时纳入相互依存的空间信息和动态时间变化是一项挑战。实际上,对于利用这些时空特征来完成复杂预测任务的模型,它通常需要大量的培训数据才能获得令人满意的模型性能。考虑到上述挑战,我们提出了一个自适应联合相关性框架,即Fedrel,以便在本文中进行时空图。将原始的时空数据转换为高质量的特征后,框架中的核心动态间间图(DIIG)模块能够使用这些功能来生成能够在这些图中捕获隐藏的拓扑和长期时间相关信息的时空图。为了提高模型的概括能力和性能,在保留本地数据隐私的同时,我们还在框架中设计了一个相关驱动的联合学习模块,以利用其模型的细心聚集的不同参与者的不同数据分布。

Spatial-temporal data contains rich information and has been widely studied in recent years due to the rapid development of relevant applications in many fields. For instance, medical institutions often use electrodes attached to different parts of a patient to analyse the electorencephal data rich with spatial and temporal features for health assessment and disease diagnosis. Existing research has mainly used deep learning techniques such as convolutional neural network (CNN) or recurrent neural network (RNN) to extract hidden spatial-temporal features. Yet, it is challenging to incorporate both inter-dependencies spatial information and dynamic temporal changes simultaneously. In reality, for a model that leverages these spatial-temporal features to fulfil complex prediction tasks, it often requires a colossal amount of training data in order to obtain satisfactory model performance. Considering the above-mentioned challenges, we propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning in this paper. After transforming the raw spatial-temporal data into high quality features, the core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs capable of capturing the hidden topological and long-term temporal correlation information in these graphs. To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module in our framework to leverage diverse data distributions from different participants with attentive aggregations of their models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源