论文标题
取样频率阈值,用于量子优势的量子优化算法
Sampling Frequency Thresholds for Quantum Advantage of Quantum Approximate Optimization Algorithm
论文作者
论文摘要
在这项工作中,我们比较了量子近似优化算法(QAOA)与最先进的经典求解器(例如Gurobi和Mqlib)的性能,以在3个规范图上求解组合优化问题MaxCut。目的是确定QAOA可以在解决方案质量和解决方案的时间方面,在哪些条件下实现“量子优势”。通过以10 kHz订单的频率对QAOA状态采样,也许可以在数百个Qubits上实现量子优势和中等深度$ p $。但是,我们观察到,经典的启发式求解器能够在线性时间复杂性中产生高质量的近似解决方案。为了匹配$ \ textit {大} $图形$ n $的这种质量,量子设备必须支持深度$ p> 11 $。否则,我们证明了所需样品的数量以$ n $的形式增长,从而阻碍了QAOA的可扩展性,并使用$ p \ leq11 $。这些结果使在3个规范图上获得QAOA MAXCUT的量子优势构成了具有挑战性的界限。其他问题,例如不同的图形,加权最大设置,最大独立集和3-SAT,可能更适合在近期量子设备上实现量子优势。
In this work, we compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers such as Gurobi and MQLib to solve the combinatorial optimization problem MaxCut on 3-regular graphs. The goal is to identify under which conditions QAOA can achieve "quantum advantage" over classical algorithms, in terms of both solution quality and time to solution. One might be able to achieve quantum advantage on hundreds of qubits and moderate depth $p$ by sampling the QAOA state at a frequency of order 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for $\textit{large}$ graph sizes $N$, a quantum device must support depth $p>11$. Otherwise, we demonstrate that the number of required samples grows exponentially with $N$, hindering the scalability of QAOA with $p\leq11$. These results put challenging bounds on achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, maximum independent set, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.