论文标题
阳离子 - 脱水锰锡硝酸盐MNSNN $ _2 $薄膜具有磁性和半导体特性的组合合成
Combinatorial synthesis of cation-disordered manganese tin nitride MnSnN$_2$ thin films with magnetic and semiconducting properties
论文作者
论文摘要
磁性半导体可能很快提高了计算机的能源效率,但是表现出这些双重性能的材料仍然没有被忽视。在这里,我们通过薄膜的组合溅射报告了新的磁性和半导体材料MNSNN $ _2 $的计算预测和实现。放牧的发病率广角X射线散射和实验室X射线衍射研究表明,这种类似Wurtzite的MNSNN $ _2 $的组成耐受性较大,范围从$ 20 \%<$ MN/(MN+SN)$ <65 $ <65 $ \%,在此组成空间中具有阳离子障碍。磁化敏感性测量显示了MNSNN $ _2 $和强抗抗铁磁相关性的低温过渡($ T^{\ Mathrm {*}} \大约10 $ K),尽管此过渡以下的订单可能很复杂。这一发现与散装MNSIN $ _2 $和MNGEN $ _2 $形成鲜明对比,后者在先前的研究中表现出反铁磁订购的400 K以上。光谱椭圆测量法鉴定了实验合成相结合的阳离子障碍的1 eV的光吸收发作,与计算预测的1.2 eV带隙的阳离子结构相一致。电子电导率测量值通过显示随着温度升高显示电导率的增加来证实该新阶段的半导体性质。这项工作增加了一组已知的半导体,这些半导体在室温下是顺磁性,将有助于指导未来的工作,以控制表现出磁性行为的半导体材料的结构和特性。
Magnetic semiconductors may soon improve the energy efficiency of computers, but materials exhibiting these dual properties remain underexplored. Here, we report the computational prediction and realization of a new magnetic and semiconducting material, MnSnN$_2$, via combinatorial sputtering of thin films. Grazing incidence wide angle X-ray scattering and laboratory X-ray diffraction studies show a wide composition tolerance for this wurtzite-like MnSnN$_2$, ranging from $20\% <$ Mn/(Mn+Sn) $< 65$\% with cation disorder across this composition space. Magnetic susceptibility measurements reveal a low-temperature transition ($T^{\mathrm{*}} \approx 10$ K) for MnSnN$_2$ and strong antiferromagnetic correlations, although the ordering below this transition may be complex. This finding contrasts with bulk MnSiN$_2$ and MnGeN$_2$, which exhibited antiferromagnetic ordering above 400 K in previous studies. Spectroscopic ellipsometry identifies an optical absorption onset of 1 eV for the experimentally-synthesized phase exhibiting cation disorder, consistent with the computationally-predicted 1.2 eV bandgap for the cation-ordered structure. Electronic conductivity measurements confirm the semiconducting nature of this new phase by showing increasing conductivity with increasing temperature. This work adds to the set of known semiconductors that are paramagnetic at room temperature and will help guide future work targeted at controlling the structure and properties of semiconducting materials that exhibit magnetic behavior.