论文标题
多Qubit Dayilies:所有等级的枚举和排名第四和五的分类
Multi-qubit doilies: enumeration for all ranks and classification for ranks four and five
论文作者
论文摘要
对于$ n \ geq 2 $,一个$ n $ qubit的duly是居住在$ n $ qubit symbletectic Polar Space中的duily。这些diilies与基于操作的量子上下文的证据有关。遵循并扩展了Saniga等人的策略。 (数学9(2021)2272)仅专注于三Qubit Dayilies,我们首先提出几个公式,为任何$ n> 2 $提供了线性和二次折磨的数量。然后,我们提出了一种有效的算法,用于生成所有$ n $ qubit的折磨。使用此算法以$ n = 4 $和$ n = 5 $使用,我们就它们具有的可观察到的类型以及所赋予的负面线的数量提供了$ n $ qubit的折磨的分类。我们还列出了几个关于$ n $ qubit的折磨的杰出发现,这些发现在三Q Qubit的情况下不存在,指出了线性折磨所展示的几个特定功能,并概述了我们方法的一些前瞻性扩展。
For $N \geq 2$, an $N$-qubit doily is a doily living in the $N$-qubit symplectic polar space. These doilies are related to operator-based proofs of quantum contextuality. Following and extending the strategy of Saniga et al. (Mathematics 9 (2021) 2272) that focused exclusively on three-qubit doilies, we first bring forth several formulas giving the number of both linear and quadratic doilies for any $N > 2$. Then we present an effective algorithm for the generation of all $N$-qubit doilies. Using this algorithm for $N=4$ and $N=5$, we provide a classification of $N$-qubit doilies in terms of types of observables they feature and number of negative lines they are endowed with. We also list several distinguished findings about $N$-qubit doilies that are absent in the three-qubit case, point out a couple of specific features exhibited by linear doilies and outline some prospective extensions of our approach.