论文标题
通过潜在空间探索具有生物力学知识的生成心肌运动跟踪先验
Generative Myocardial Motion Tracking via Latent Space Exploration with Biomechanics-informed Prior
论文作者
论文摘要
心肌运动和变形是表征心脏功能的丰富描述符。图像注册是心肌运动跟踪最常用的技术,是一个不当的反问题,通常需要先前对解决方案空间进行假设。与大多数现有的方法相反,施加了明确的通用正则化(例如平滑度),在这项工作中,我们提出了一种新的方法,该方法可以隐式地学习提前的特定应用程序生物力学,并将其嵌入神经网络参数化转换模型中。特别是,所提出的方法利用基于变异自动编码器的生成模型来学习生物力学上合理变形的多种多样。然后,可以通过穿越学习的歧管来搜索最佳转换时,在考虑序列信息时搜索最佳转换。提出的方法在三个公共心脏Cine MRI数据集中进行了验证,并具有全面的评估。结果表明,所提出的方法可以胜过其他方法,从而产生更高的运动跟踪精度,并具有合理的体积保存和更好地变化数据分布的可推广性。它还可以更好地估计心肌菌株,这表明该方法表征时空特征的潜力用于理解心血管疾病。
Myocardial motion and deformation are rich descriptors that characterize cardiac function. Image registration, as the most commonly used technique for myocardial motion tracking, is an ill-posed inverse problem which often requires prior assumptions on the solution space. In contrast to most existing approaches which impose explicit generic regularization such as smoothness, in this work we propose a novel method that can implicitly learn an application-specific biomechanics-informed prior and embed it into a neural network-parameterized transformation model. Particularly, the proposed method leverages a variational autoencoder-based generative model to learn a manifold for biomechanically plausible deformations. The motion tracking then can be performed via traversing the learnt manifold to search for the optimal transformations while considering the sequence information. The proposed method is validated on three public cardiac cine MRI datasets with comprehensive evaluations. The results demonstrate that the proposed method can outperform other approaches, yielding higher motion tracking accuracy with reasonable volume preservation and better generalizability to varying data distributions. It also enables better estimates of myocardial strains, which indicates the potential of the method in characterizing spatiotemporal signatures for understanding cardiovascular diseases.