论文标题

自我监督的图形神经网络,以准确预测Néel温度

Self-supervised graph neural networks for accurate prediction of Néel temperature

论文作者

Kong, Jian-Gang, Li, Qing-Xu, Li, Jian, Liu, Yu, Zhu, Jia-Ji

论文摘要

抗铁磁材料是令人兴奋的量子材料,具有丰富的物理和巨大的应用潜力。高度要求对确定抗铁磁材料的临界过渡温度,néel温度,Néel温度的准确和有效理论方法。成功预测材料特性的强大图形神经网络(GNN)在预测磁性材料的小数据集引起的磁性特性方面失去了优势,而常规机器学习模型在很大程度上取决于材料描述符的质量。我们提出了一种新的策略,通过在大规模未标记的数据集中利用对GNN的自我监督培训来提取高级材料表示。根据尺寸还原分析,我们发现有关元素和磁性的学习知识将转移到生成的原子量表示。与流行的手动构造描述符和晶体图卷积神经网络相比,自我监督的材料表示可以帮助我们获得Néel温度的更准确,更有效的模型,并且训练有素的模型可以成功预测高Néel温度抗Fiferromagnetic材料。我们的自我监督的GNN可以作为各种材料特性的普遍培训框架。

Antiferromagnetic materials are exciting quantum materials with rich physics and great potential for applications. It is highly demanded of the accurate and efficient theoretical method for determining the critical transition temperatures, Néel temperatures, of antiferromagnetic materials. The powerful graph neural networks (GNN) that succeed in predicting material properties lose their advantage in predicting magnetic properties due to the small dataset of magnetic materials, while conventional machine learning models heavily depend on the quality of material descriptors. We propose a new strategy to extract high-level material representations by utilizing self-supervised training of GNN on large-scale unlabeled datasets. According to the dimensional reduction analysis, we find that the learned knowledge about elements and magnetism transfers to the generated atomic vector representations. Compared with popular manually constructed descriptors and crystal graph convolutional neural networks, self-supervised material representations can help us obtain a more accurate and efficient model for Néel temperatures, and the trained model can successfully predict high Néel temperature antiferromagnetic materials. Our self-supervised GNN may serve as a universal pre-training framework for various material properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源