论文标题

用机器学习简化多层次

Simplifying Polylogarithms with Machine Learning

论文作者

Dersy, Aurélien, Schwartz, Matthew D., Zhang, Xiaoyuan

论文摘要

聚类函数(例如对数或偏线径)满足许多代数身份。对于对数,所有身份都来自产品规则。对于Diologarithm和更高的经典细分线,这些身份可能涉及五个或更多功能。在与粒子物理学相关的许多计算中,聚集体的复杂组合通常来自Feynman积分。尽管集成产生的初始表达通常简化,但通常很难知道要应用哪些身份以及按什么顺序应用。为了解决这种瓶颈,我们探索机器学习方法可以帮助您。我们考虑了一种强化学习方法,在该方法中,身份类似于游戏中的移动,也是变压器网络方法,在该方法中,问题类似于语言翻译任务。尽管这两种方法都是有效的,但变压器网络似乎更强大,并且在数学物理学中的符号操纵任务中实现了实际使用的希望。

Polylogrithmic functions, such as the logarithm or dilogarithm, satisfy a number of algebraic identities. For the logarithm, all the identities follow from the product rule. For the dilogarithm and higher-weight classical polylogarithms, the identities can involve five functions or more. In many calculations relevant to particle physics, complicated combinations of polylogarithms often arise from Feynman integrals. Although the initial expressions resulting from the integration usually simplify, it is often difficult to know which identities to apply and in what order. To address this bottleneck, we explore to what extent machine learning methods can help. We consider both a reinforcement learning approach, where the identities are analogous to moves in a game, and a transformer network approach, where the problem is viewed analogously to a language-translation task. While both methods are effective, the transformer network appears more powerful and holds promise for practical use in symbolic manipulation tasks in mathematical physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源