论文标题
具有参数化量子电路的绝热量子计算
Adiabatic quantum computing with parameterized quantum circuits
论文作者
论文摘要
绝热量子计算是用于量子计算的通用模型,其使用基于门的量子计算机实现需要在早期耐断层时代无法达到的深度。为了减轻近期设备的局限性,已经采用了许多混合方法,在该方法中,参数化的量子电路准备并测量量子状态和经典优化算法最小化的目标函数,该目标函数涵盖了解决利益问题的解决方案。在这项工作中,我们提出了一种不同的方法,从分析哈密顿量的小扰动如何影响参数化量子状态家族中的能量的参数。我们得出一组方程式,使我们能够通过求解一个约束的方程式来计算新的最小值,该方程是通过测量未扰动系统上的一系列可观察力获得的。然后,我们提出了一个可以在近期设备中实现的绝热量子计算的离散版本,同时对参数的初始化和在变化量子算法的优化部分中阻碍的其他限制不敏感。我们将提出的算法与两个经典优化问题(即Maxcut和数字分配)以及量子旋转配置问题(横向式ISING链链模型)进行了比较,并确认我们的方法证明了卓越的性能。
Adiabatic quantum computing is a universal model for quantum computing whose implementation using a gate-based quantum computer requires depths that are unreachable in the early fault-tolerant era. To mitigate the limitations of near-term devices, a number of hybrid approaches have been pursued in which a parameterized quantum circuit prepares and measures quantum states and a classical optimization algorithm minimizes an objective function that encompasses the solution to the problem of interest. In this work, we propose a different approach starting by analyzing how a small perturbation of a Hamiltonian affects the parameters that minimize the energy within a family of parameterized quantum states. We derive a set of equations that allow us to compute the new minimum by solving a constrained linear system of equations that is obtained from measuring a series of observables on the unperturbed system. We then propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device while at the same time is insensitive to the initialization of the parameters and to other limitations hindered in the optimization part of variational quantum algorithms. We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems, namely MaxCut and Number Partitioning, and on a quantum-spin configuration problem, the Transverse-Field Ising Chain model, and confirm that our approach demonstrates superior performance.