论文标题

使用面部视频的远程照相体积学识别抑郁识别

Depression Recognition using Remote Photoplethysmography from Facial Videos

论文作者

Casado, Constantino Álvarez, Cañellas, Manuel Lage, López, Miguel Bordallo

论文摘要

抑郁症是一种可能对个人健康有害的精神疾病。在早期阶段的心理健康障碍和精确诊断对避免社会,生理或心理副作用至关重要。这项工作分析了生理信号,以观察不同的抑郁状态是否对血液体积脉冲(BVP)和心率变异性(HRV)反应有明显影响。尽管通常,HRV功能是根据使用基于接触的传感器(例如可穿戴设备)获得的生物信号计算的,但我们提出了一种新颖的方案,该方案直接从面部视频中提取,只是基于视觉信息,从而消除了对任何基于接触的设备的需求。我们的解决方案是基于能够以完全无监督的方式提取完整的远程光摄影信号(RPPG)的管道。我们使用这些RPPG信号来计算60多个统计,几何和生理特征,这些特征将进一步用于训练多个机器学习回归器以识别不同水平的抑郁症。在两个基准数据集上的实验表明,这种方法可根据语音或面部表达的其他视听方式可比,从而有可能补充它们。此外,提出的方法所取得的结果表明,表现出色和坚实的性能,表现优于手工设计的方法,并且与基于深度学习的方法相媲美。

Depression is a mental illness that may be harmful to an individual's health. The detection of mental health disorders in the early stages and a precise diagnosis are critical to avoid social, physiological, or psychological side effects. This work analyzes physiological signals to observe if different depressive states have a noticeable impact on the blood volume pulse (BVP) and the heart rate variability (HRV) response. Although typically, HRV features are calculated from biosignals obtained with contact-based sensors such as wearables, we propose instead a novel scheme that directly extracts them from facial videos, just based on visual information, removing the need for any contact-based device. Our solution is based on a pipeline that is able to extract complete remote photoplethysmography signals (rPPG) in a fully unsupervised manner. We use these rPPG signals to calculate over 60 statistical, geometrical, and physiological features that are further used to train several machine learning regressors to recognize different levels of depression. Experiments on two benchmark datasets indicate that this approach offers comparable results to other audiovisual modalities based on voice or facial expression, potentially complementing them. In addition, the results achieved for the proposed method show promising and solid performance that outperforms hand-engineered methods and is comparable to deep learning-based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源