论文标题
信息和控制:大脑内的见解
Information And Control: Insights from within the brain
论文作者
论文摘要
大脑的神经网络能够根据突触学习,功能整合到越来越大的,相互联系的神经组件和自我组织中学习统计输入规律性。这种自组织能力对机器人技术中的生物学启发的控制结构具有影响。根据视觉,声音,气味,触摸和本体感受的信号输入,基于环境的物理指定的输入,生成了动作的多感官表示。体感皮质是一个大脑枢纽,为多功能表示和控制提供了一个选择的示例。所有感官信息都是在生物学大脑中拓扑代表的第一例中,此后集成在体感神经网络中,以对复杂行为进行多模式和多功能控制。多信号输入会触发视觉,听觉,触觉,嗅觉和本体感受机制之间的相互作用,这些机制在学习过程中进行合作或竞争,并有助于形成综合的行动,反思,代理商与外界之间的交流。相互作用为复杂的行为策略部署和进一步的学习提供了越来越多的固有模棱两可的物理环境的一致性。
The neural networks of the brain are capable of learning statistical input regularities on the basis of synaptic learning, functional integration into increasingly larger, interconnected neural assemblies, and self organization. This self organizing ability has implications for biologically inspired control structures in robotics. On the basis of signal input from vision, sound, smell, touch and proprioception, multisensory representations for action are generated on the basis of physically specified input from the environment. The somatosensory cortex is a brain hub that delivers a choice example of integration for multifunctional representation and control. All sensory information is in a first instance topologically represented in the biological brain, and thereafter integrated in somatosensory neural networks for multimodal and multifunctional control of complex behaviors. Multisignal input triggers interactions between visual, auditory, tactile, olfactive, and proprioceptive mechanisms, which cooperate or compete during learning, and contribute to the formation of integrated representations for action, reflection, and communication between the agent and the outside world. Interaction fuels complex behavioral strategy deployment and further learning for increasingly coherent representation of intrinsically ambiguous physical environments.