论文标题

知识蒸馏决策树,用于揭示黑盒机器学习模型

Knowledge Distillation Decision Tree for Unravelling Black-box Machine Learning Models

论文作者

Lu, Xuetao, Lee, J. Jack

论文摘要

机器学习模型,尤其是黑盒模型,因其出色的预测能力而受到广泛青睐。但是,由于缺乏解释性,他们经常面临审查和批评。矛盾的是,它们的强大预测能力可能表明对基本数据有深刻的了解,这意味着解释的巨大潜力。利用知识蒸馏的新兴概念,我们介绍了知识蒸馏决策树(KDDT)的方法。该方法可以将有关数据从黑框模型的知识提炼到决策树,从而促进了黑框模型的解释。良好解释模型的基本属性包括简单,稳定性和预测性。构建可解释树的主要挑战在于确保在训练数据的随机性下结构稳定性。 KDDT的开发是由理论基础开发的,表明在轻度假设下可以实现结构稳定性。此外,我们提出混合KDDT以实现简单性和预测性。提供了一种有效的算法来构建混合KDDT。模拟研究和真实数据分析验证了混合KDDT提供准确可靠的解释的能力。 KDDT是一个出色的可解释模型,具有实践应用的巨大潜力。

Machine learning models, particularly the black-box models, are widely favored for their outstanding predictive capabilities. However, they often face scrutiny and criticism due to the lack of interpretability. Paradoxically, their strong predictive capabilities may indicate a deep understanding of the underlying data, implying significant potential for interpretation. Leveraging the emerging concept of knowledge distillation, we introduce the method of knowledge distillation decision tree (KDDT). This method enables the distillation of knowledge about the data from a black-box model into a decision tree, thereby facilitating the interpretation of the black-box model. Essential attributes for a good interpretable model include simplicity, stability, and predictivity. The primary challenge of constructing interpretable tree lies in ensuring structural stability under the randomness of the training data. KDDT is developed with the theoretical foundations demonstrating that structure stability can be achieved under mild assumptions. Furthermore, we propose the hybrid KDDT to achieve both simplicity and predictivity. An efficient algorithm is provided for constructing the hybrid KDDT. Simulation studies and a real-data analysis validate the hybrid KDDT's capability to deliver accurate and reliable interpretations. KDDT is an excellent interpretable model with great potential for practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源