论文标题

限制分区功能的对数concavity $ p_ \ mathcal {a}(n,k)$和新的bessenrodt-ono类型不等式

Log-concavity of the restricted partition function $p_\mathcal{A}(n,k)$ and the new Bessenrodt-Ono type inequality

论文作者

Gajdzica, Krystian

论文摘要

令$ \ mathcal {a} =(a_i)_ {i = 1}^\ infty $是一个非淘汰的正整数的序列,让$ k \ in \ mathbb {n} _+$修复。函数$ p_ \ mathcal {a}(n,k)$对$ n $的分区数量计数$ n $的分区数,而多零件中的零件$ \ {a_1,a_2,a_2,\ ldots,a_k \ \} $。我们发现了一种新型的bessenrodt-ono不等式,用于$ p_ \ mathcal {a}(n,k)$。此外,我们发现$ k $,$ \ {a_1,a_2,\ ldots,a_k \} $和$ n \ in \ mathbb {n} _+$,序列$ \ left(p_ \ \ mathcal {a}(n,k)\ right)我们的证明是基于$ p_ \ Mathcal {a}(n,k)$的渐近行为,尤其是我们应用了Netto和Pólya-Szegö的结果以及Almkavist的估计。

Let $\mathcal{A}=(a_i)_{i=1}^\infty$ be a non-decreasing sequence of positive integers and let $k\in\mathbb{N}_+$ be fixed. The function $p_\mathcal{A}(n,k)$ counts the number of partitions of $n$ with parts in the multiset $\{a_1,a_2,\ldots,a_k\}$. We find out a new type of Bessenrodt-Ono inequality for the function $p_\mathcal{A}(n,k)$. Further, we discover when and under what conditions on $k$, $\{a_1,a_2,\ldots,a_k\}$ and $N\in\mathbb{N}_+$, the sequence $\left(p_\mathcal{A}(n,k)\right)_{n=N}^\infty$ is log-concave. Our proofs are based on the asymptotic behavior of $p_\mathcal{A}(n,k)$, in particular, we apply the results of Netto and Pólya-Szegö as well as the Almkavist's estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源