论文标题

R4D:利用参考对象进行长距离距离估计

R4D: Utilizing Reference Objects for Long-Range Distance Estimation

论文作者

Li, Yingwei, Chen, Tiffany, Kabkab, Maya, Yu, Ruichi, Jing, Longlong, You, Yurong, Zhao, Hang

论文摘要

估计物体的距离是自动驾驶的一项安全至关重要的任务。专注于短距离对象,现有方法和数据集忽略了同样重要的远程对象。在本文中,我们介绍了一项具有挑战性且探索不足的任务,我们将其称为长距离距离估计,以及两个数据集来验证为此任务开发的新方法。然后,我们提出的第一个框架是通过使用现场已知距离的引用来准确估算远程对象的距离的第一个框架。从人类感知中汲取灵感,R4D通过将目标对象连接到所有参考文献来构建图形。图中的边缘编码一对目标和参考对象之间的相对距离信息。然后使用注意模块权衡参考对象的重要性,并将它们组合到一个目标对象距离预测中。与现有基准相比,这两个数据集的实验通过显示出显着改善,证明了R4D的有效性和鲁棒性。我们正在寻求制作提出的数据集,Waymo OpenDataSet -Long -Range标签,可在Waymo.com/open/download上公开可用。

Estimating the distance of objects is a safety-critical task for autonomous driving. Focusing on short-range objects, existing methods and datasets neglect the equally important long-range objects. In this paper, we introduce a challenging and under-explored task, which we refer to as Long-Range Distance Estimation, as well as two datasets to validate new methods developed for this task. We then proposeR4D, the first framework to accurately estimate the distance of long-range objects by using references with known distances in the scene. Drawing inspiration from human perception, R4D builds a graph by connecting a target object to all references. An edge in the graph encodes the relative distance information between a pair of target and reference objects. An attention module is then used to weigh the importance of reference objects and combine them into one target object distance prediction. Experiments on the two proposed datasets demonstrate the effectiveness and robustness of R4D by showing significant improvements compared to existing baselines. We are looking to make the proposed dataset, Waymo OpenDataset - Long-Range Labels, available publicly at waymo.com/open/download.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源