论文标题
在经典的n-宇宙二次形式上
On classic n-universal quadratic forms over dyadic local fields
论文作者
论文摘要
令$ n $为整数,$ n \ ge 2 $。如果代表所有$ n $ n $ ar的经典二次二次形式,则在本地田地上的经典二次形式称为经典$ n $ umiversal。我们分别确定了经典的$ n $ $ n $二次二次形式的等效条件和最小的测试集,分别在二元局部领域。
Let $ n $ be an integer and $ n\ge 2 $. A classic integral quadratic form over local fields is called classic $ n $-universal if it represents all $n$-ary classic integral quadratic forms. We determine the equivalent conditions and minimal testing sets for classic $ n $-universal quadratic forms over dyadic local fields, respectively.