论文标题
歧管上的不含Lipschitz的空间和度量近似属性
Lipschitz-Free Spaces over Manifolds and the Metric Approximation Property
论文作者
论文摘要
让$ \ cdot \ | $成为$ \ mathbb {r}^n $的标准,让$ m $成为封闭的$ c^1 $ -submanifold of $ \ mathbb {r}^n $。考虑指定的度量空间$(m,d)$,其中$ d $是$ d(x,y)= \ | x-y \ | $,$ x,y \ in m $给出的度量。然后,不含Lipschitz的空间$ \ MATHCAL {F}(M)$具有度量近似属性。
Let $\|\cdot\|$ be a norm on $\mathbb{R}^N$ and let $M$ be a closed $C^1$-submanifold of $\mathbb{R}^N$. Consider the pointed metric space $(M,d)$, where $d$ is the metric given by $d(x,y)=\|x-y\|$, $x,y\in M$. Then the Lipschitz-free space $\mathcal{F}(M)$ has the Metric Approximation Property.