论文标题

改进了辐射场重建的直接体素电网优化

Improved Direct Voxel Grid Optimization for Radiance Fields Reconstruction

论文作者

Sun, Cheng, Sun, Min, Chen, Hwann-Tzong

论文摘要

在此技术报告中,我们改进了基于Pytorch并使用最简单的密集网格表示的DVGO框架(称为DVGOV2)。首先,我们使用CUDA重新实现Pytorch操作的一部分,以2-3x的速度实现。 CUDA扩展将自动及时编译。其次,我们扩展了DVGO,以支持向前的前进和无限的朝内捕获。第三,我们改善了MIP-NERF 360从O(n^2)到O(n)提出的失真损失的时空复杂性。失真损失提高了我们的质量和训练速度。我们有效的实施可以使更多的未来工作从损失中受益。

In this technical report, we improve the DVGO framework (called DVGOv2), which is based on Pytorch and uses the simplest dense grid representation. First, we re-implement part of the Pytorch operations with cuda, achieving 2-3x speedup. The cuda extension is automatically compiled just in time. Second, we extend DVGO to support Forward-facing and Unbounded Inward-facing capturing. Third, we improve the space time complexity of the distortion loss proposed by mip-NeRF 360 from O(N^2) to O(N). The distortion loss improves our quality and training speed. Our efficient implementation could allow more future works to benefit from the loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源