论文标题
N-D中形状树的证明
A Proof of the Tree of Shapes in n-D
论文作者
论文摘要
在本文中,我们证明了通过g {é} raud等人的算法在N-D灰级井层拟合图像u上计算的自动形态层次结构。 [1]正是在Najman等人[2]中定义为U的数学结构。我们记得该算法在准线性时期,因此被认为是最佳的。形状树在数学形态和图像处理中导致许多应用,例如谷物过滤,形状,图像分割等。
In this paper, we prove that the self-dual morphological hierarchical structure computed on a n-D gray-level wellcomposed image u by the algorithm of G{é}raud et al. [1] is exactly the mathematical structure defined to be the tree of shape of u in Najman et al [2]. We recall that this algorithm is in quasi-linear time and thus considered to be optimal. The tree of shapes leads to many applications in mathematical morphology and in image processing like grain filtering, shapings, image segmentation, and so on.