论文标题

超薄金属阳极的表面工程,可实现高性能Zn-Ion电池

Surface engineering for ultrathin metal anodes enabling high-performance Zn-ion batteries

论文作者

Hu, Ziyi, Zhou, Linming, Meng, Dechao, Zhao, Liyan, Li, Yihua, Huang, Yuhui, Wu, Yongjun, Yang, Shikuan, Li, Linsen, Hong, Zijian

论文摘要

在可再生能源存储和网格存储中,Zn金属电池被认为是一种有希望的替代储能技术。众所周知,锌金属阳极的表面方向对于锌金属电池的可逆性至关重要。在此,通过在ZnSO4水溶液中添加(DMSO)电解质添加剂,将(101)面向的薄Zn金属阳极(向下至2μm)在Cu表面上进行电沉积。扫描电子显微镜(SEM)观察表明形成了扁平露台状的紧凑型(101)面向的表面。 Insitu光学观察证实,(101)面向的表面可以可逆地镀板和剥离。 DFT计算揭示了Zn-(101)表面成核和生长的两种机制:(1)与Zn(002)// Cu(001)相比,Zn(101)// Cu(101)// Cu(001)的形成可以降低界面能量; (2)具有DMSO和H2O吸收的Zn(101)表面的大量重建。拉曼,XP和TOF-SIMS表征表明,在ZnCl2中添加DMSO可以促进基于ZnO的SEI在Zn金属表面上的形成,而在ZNSO4中可以通过DMSO获得OH-和S基SEI。进行了电化学测试,该测试表明,在半细胞中,(101)面向(101)面向的Zn以及相对于相同电极厚度的(002)区域的表面的较低电荷传递屏障。 Zn || V2O5全细胞进一步组装,与(5μM,3μM和2μM)的(002)-ZN相比,(101)-ZN显示了(101)-ZN的能力保持更好。我们希望这项研究能够促进对Zn金属表面晶体学方向的控制,这是对超薄Zn金属阳极的控制。

Zn metal battery has been considered a promising alternative energy storage technology in renewable energy storage and grid storage. It is well-known that the surface orientation of a Zn metal anode is vital to the reversibility of a Zn metal battery. Herein, the (101)-oriented thin Zn metal anode (down to 2 μm) is electrodeposited on a Cu surface by adding dimethyl sulfoxide (DMSO) electrolyte additive in ZnSO4 aqueous solution. Scanning electron microscope (SEM) observation indicates the formation of flat terrace-like compact (101)-oriented surfaces. Insitu optical observation confirms that the (101)-oriented surfaces can be reversibly plated and stripped. DFT calculations reveal two mechanisms for the nucleation and growth of the Zn-(101) surface: (1) formation of Zn(101)//Cu(001) could lower the interface energy as compared to Zn(002)//Cu(001); (2) large reconstruction of the Zn (101) surface with DMSO and H2O absorption. Raman, XPS, and ToF-SIMS characterizations indicate that adding DMSO in ZnCl2 could facilitate the formation of ZnO-based SEI on Zn metal surface, while OH- and S-based SEI can be obtained with DMSO in ZnSO4. The electrochemical testings are performed, which demonstrates a higher cyclability for the (101)-oriented Zn in the half cell as well as a lower charge transfer barrier with respect to the (002)-dominated surface of the same electrode thickness. Zn||V2O5 full cells are further assembled, showing better capacity retention for the (101)-Zn as compared to the (002)-Zn with the same thickness (5 μm, 3 μm, and 2 μm). We hope this study to spur further interest in the control of Zn metal surface crystallographic orientation towards ultrathin Zn metal anodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源