论文标题
重新知道:联合实体和关系提取的知识增强
REKnow: Enhanced Knowledge for Joint Entity and Relation Extraction
论文作者
论文摘要
关系提取是一项重要但具有挑战性的任务,旨在从文本中提取所有隐藏的关系事实。随着深层语言模型的发展,关系提取方法在各种基准上取得了良好的性能。但是,我们观察到以前方法的两个缺点:首先,在各种关系提取设置下没有统一的框架可以很好地工作;其次,有效利用外部知识作为背景信息。在这项工作中,我们提出了一种知识增强的生成模型来减轻这两个问题。我们的生成模型是一个统一的框架,可以在各种关系提取设置下依次生成关系三重态,并明确利用来自知识图(KG)的相关知识来解决歧义。我们的模型在包括WebNLG,NYT10和Tacred在内的多个基准和设置上实现了卓越的性能。
Relation extraction is an important but challenging task that aims to extract all hidden relational facts from the text. With the development of deep language models, relation extraction methods have achieved good performance on various benchmarks. However, we observe two shortcomings of previous methods: first, there is no unified framework that works well under various relation extraction settings; second, effectively utilizing external knowledge as background information is absent. In this work, we propose a knowledge-enhanced generative model to mitigate these two issues. Our generative model is a unified framework to sequentially generate relational triplets under various relation extraction settings and explicitly utilizes relevant knowledge from Knowledge Graph (KG) to resolve ambiguities. Our model achieves superior performance on multiple benchmarks and settings, including WebNLG, NYT10, and TACRED.