论文标题

事件摄像机的全球最大对比度最大化

Globally-Optimal Contrast Maximisation for Event Cameras

论文作者

Peng, Xin, Gao, Ling, Wang, Yifu, Kneip, Laurent

论文摘要

事件摄像机是受生物启发的传感器,在具有挑战性的照明条件下表现良好,并且具有高时间分辨率。但是,他们的概念与传统的基于框架的相机根本不同。事件摄像机的像素独立和不同步。他们测量对数亮度的变化,并以高度离散的时间stamp事件形式返回它们,表明自上次事件以来一定数量的相对变化。需要新的模型和算法来处理这种测量。目前的工作着眼于事件摄像机的几个运动估计问题。事件的流以时空量的一般均应翘曲为模型,并且该目标被提出为在扭曲事件图像中的对比度最大化。我们的核心贡献包括针对这些通常非凸的问题得出全球最佳解决方案,这消除了对困扰现有方法的良好初始猜测的依赖。我们的方法依赖于分支和结合的优化,并采用了针对六个不同的对比度估计功能得出的新型和高效的递归上限和下限。通过成功应用于三个不同的事件摄像机运动估计问题,我们的方法的实际有效性证明了这一点。

Event cameras are bio-inspired sensors that perform well in challenging illumination conditions and have high temporal resolution. However, their concept is fundamentally different from traditional frame-based cameras. The pixels of an event camera operate independently and asynchronously. They measure changes of the logarithmic brightness and return them in the highly discretised form of time-stamped events indicating a relative change of a certain quantity since the last event. New models and algorithms are needed to process this kind of measurements. The present work looks at several motion estimation problems with event cameras. The flow of the events is modelled by a general homographic warping in a space-time volume, and the objective is formulated as a maximisation of contrast within the image of warped events. Our core contribution consists of deriving globally optimal solutions to these generally non-convex problems, which removes the dependency on a good initial guess plaguing existing methods. Our methods rely on branch-and-bound optimisation and employ novel and efficient, recursive upper and lower bounds derived for six different contrast estimation functions. The practical validity of our approach is demonstrated by a successful application to three different event camera motion estimation problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源