论文标题
拟合协方差矩阵模型与模拟
Fitting covariance matrix models to simulations
论文作者
论文摘要
宇宙学中的数据分析需要可靠的协方差矩阵。来自数值模拟的协方差矩阵通常需要大量的实现才能准确。当存在协方差矩阵的理论模型时,模型的参数通常可以与较少的模拟拟合。我们编写了一种基于可能性的方法来执行这种合适的方法。我们证明了如何通过从模拟中检查适当的$χ^2 $分布来测试模型协方差矩阵。我们表明,如果模型协方差具有振幅自由度,则使用真实协方差矩阵的第二秒$χ^2 $分布的第二瞬间的期望值始终大于一个分布。通过将这些步骤结合在一起,我们提供了一种生产可靠的协方差的方法,而无需进行大量模拟。我们在两个示例中演示了我们的方法。首先,我们测量了来自大量$ 10000 $模拟光环目录的光环的两点相关函数。我们使用$ 2 $的免费参数构建模型协方差,我们使用程序适合。从仅$ 100 $的仿真实现获得的最佳最佳拟合模型协方差证明与从整个$ 10000 $ set构建的数值协方差矩阵一样可靠。我们还在设置上测试了我们的方法,其中协方差矩阵是通过测量数千个三角形的晕圈双光谱的相同模拟组合的大量的。我们建立了一个块对角线模型协方差,以$ 2 $的免费参数,以改进对角线高斯协方差。在这种情况下,我们的模型协方差通过$χ^2 $测试仅部分,表明该模型即使使用自由参数也不足,但是高斯速度也显着改善。
Data analysis in cosmology requires reliable covariance matrices. Covariance matrices derived from numerical simulations often require a very large number of realizations to be accurate. When a theoretical model for the covariance matrix exists, the parameters of the model can often be fit with many fewer simulations. We write a likelihood-based method for performing such a fit. We demonstrate how a model covariance matrix can be tested by examining the appropriate $χ^2$ distributions from simulations. We show that if model covariance has amplitude freedom, the expectation value of second moment of $χ^2$ distribution with a wrong covariance matrix will always be larger than one using the true covariance matrix. By combining these steps together, we provide a way of producing reliable covariances without ever requiring running a large number of simulations. We demonstrate our method on two examples. First, we measure the two-point correlation function of halos from a large set of $10000$ mock halo catalogs. We build a model covariance with $2$ free parameters, which we fit using our procedure. The resulting best-fit model covariance obtained from just $100$ simulation realizations proves to be as reliable as the numerical covariance matrix built from the full $10000$ set. We also test our method on a setup where the covariance matrix is large by measuring the halo bispectrum for thousands of triangles for the same set of mocks. We build a block diagonal model covariance with $2$ free parameters as an improvement over the diagonal Gaussian covariance. Our model covariance passes the $χ^2$ test only partially in this case, signaling that the model is insufficient even using free parameters, but significantly improves over the Gaussian one.