论文标题
基于3D物理启发的神经网络(PINN)的光学衍射断层扫描
Optical Diffraction Tomography based on 3D Physics-Inspired Neural Network (PINN)
论文作者
论文摘要
光学衍射断层扫描(ODT)是一种新兴的3D成像技术,用于半透明样品的折射率(RI)的3D重建。已经提出了各种逆模型,以基于对不同样品(例如BORN和RYTOV近似)的全息检测来重建3D RI。但是,这种近似通常会遭受所谓的缺失键问题,从而导致沿光轴的最终重建伸长。已经提出了不同的迭代方案来解决依靠物理前向模型的缺失锥体问题和旨在填充K空间的错误函数,从而消除了缺失的键问题并达到更好的重建精度。在本文中,我们提出了一种使用3D神经网络(NN)的不同方法。 NN经过基于光波传播物理的物理模型得出的成本函数训练。 3D NN以3D RI重建(即出生或Rytov)的初始猜测开始,并旨在根据错误函数重建更好的3D重建。有了这种技术,可以对NN进行训练,而无需任何范围的重建(出生或Rytov)与地面真相(真实形状)之间的关系。
Optical diffraction tomography (ODT) is an emerging 3D imaging technique that is used for the 3D reconstruction of the refractive index (RI) for semi-transparent samples. Various inverse models have been proposed to reconstruct the 3D RI based on the holographic detection of different samples such as the Born and the Rytov approximations. However, such approximations usually suffer from the so-called missing-cone problem that results in an elongation of the final reconstruction along the optical axis. Different iterative schemes have been proposed to solve the missing cone problem relying on physical forward models and an error function that aims at filling in the k-space and thus eliminating the missing-cone problem and reaching better reconstruction accuracy. In this paper, we propose a different approach where a 3D neural network (NN) is employed. The NN is trained with a cost function derived from a physical model based on the physics of optical wave propagation. The 3D NN starts with an initial guess for the 3D RI reconstruction (i.e. Born, or Rytov) and aims at reconstructing better 3D reconstruction based on an error function. With this technique, the NN can be trained without any examples of the relation between the ill-posed reconstruction (Born or Rytov) and the ground truth (true shape).