论文标题

成像Air Cherenkov望远镜的深度学习技术

Deep learning techniques for Imaging Air Cherenkov Telescopes

论文作者

De, Songshaptak, Maitra, Writasree, Rentala, Vikram, Thalapillil, Arun M.

论文摘要

非常高的能量(VHE)伽玛射线和带电的宇宙射线(CCR)为极端天体物理环境的加速机理提供了一个观察窗口。旨在寻找VHE伽玛射线的Air Cherenkov望远镜(IACTS)的主要挑战之一是CCR发起的空气淋浴的分离,构成了伽马射线搜索的背景。 a)在CCR事件中对不同主要原子核的分类和b)鉴定由超出标准模型颗粒引发的异常事件的其他两个较不错的问题是a)不同的原发核的分类,这些事件可能引起淋浴标志,这些事件可能会引起与伽马射线或CCR淋浴器的标准图像不同的淋浴标志。对启动淋浴图像的主要粒子进行分类的问题,或以独立模型方式标记异常淋浴事件的问题,是非常适合机器学习(ML)方法的问题。探索伽马射线/CCR分离的传统研究使用了基于派生淋浴特性的多元分析,其中包含有关淋浴的信息。在我们的工作中,我们通过使用在完全模拟的淋浴图像中训练的ML架构来解决上述问题,而不是仅在几个派生的淋浴物业上进行培训。我们说明了使用卷积神经网络说明二进制和多类分类的技术,并且还在VHE伽马射线实验中使用自动编码器用于异常检测。作为案例研究,我们将技术应用于H.E.S.S.实验。但是,在VHE伽马射线观测值的背景下,我们在这里所提供的技术的真正强度是,这些方法可以广泛地应用于任何其他IACT,例如即将到来的Cherenkov望远镜阵列(CTA),甚至可以适当地适当地适用于CCR实验。

Very High Energy (VHE) gamma rays and charged cosmic rays (CCRs) provide an observational window into the acceleration mechanisms of extreme astrophysical environments. One of the major challenges at Imaging Air Cherenkov Telescopes (IACTs) designed to look for VHE gamma rays, is the separation of air showers initiated by CCRs which form a background to gamma ray searches. Two other less well studied problems at IACTs are a) the classification of different primary nuclei among the CCR events and b) identification of anomalous events initiated by Beyond Standard Model particles that could give rise to shower signatures which differ from the standard images of either gamma rays or CCR showers. The problems of categorizing the primary particle that initiates a shower image, or the problem of tagging anomalous shower events in a model independent way, are problems that are well suited to a machine learning (ML) approach. Traditional studies that have explored gamma ray/CCR separation have used a multivariate analysis based on derived shower properties, which contains significantly reduced information about the shower. In our work, we address the problems outlined above by using ML architectures trained on full simulated shower images, as opposed to training on just a few derived shower properties. We illustrate the techniques of binary and multi-category classification using convolutional neural networks, and we also pioneer the use of autoencoders for anomaly detection at VHE gamma ray experiments. As a case study, we apply our techniques to the H.E.S.S. experiment. However, the real strength of the techniques that we broach here in the context of VHE gamma ray observatories, is that these methods can be applied broadly to any other IACT, such as the upcoming Cherenkov Telescope Array (CTA), or can even be suitably adapted to CCR experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源