论文标题
E2PN:有效的SE(3) - 等级点网络
E2PN: Efficient SE(3)-Equivariant Point Network
论文作者
论文摘要
本文提出了一种学习SE(3)等量表的卷积结构,来自3D点云。可以将其视为内核点卷积(KPCONV)的模棱两可的版本,这是一种广泛使用的卷积形式,用于处理点云数据。与现有的Eproivariant网络相比,我们的设计简单,轻巧,快速且易于与现有特定于任务的云学习管道集成。我们通过将小组卷积和商表示来实现这些理想的属性。具体而言,我们将SO(3)离散为有限组的简单性(2)作为稳定器亚组,以形成球形商特征字段以节省计算。我们还提出了一个置换层以恢复,因此(3)从球形特征中的特征保留了区分旋转的能力。实验表明,我们的方法在各种任务中实现了可比或卓越的性能,包括对象分类,姿势估计和关键点匹配,同时消耗的内存和运行速度要比现有工作更快。所提出的方法可以促进基于点云的现实应用程序的模型的开发。
This paper proposes a convolution structure for learning SE(3)-equivariant features from 3D point clouds. It can be viewed as an equivariant version of kernel point convolutions (KPConv), a widely used convolution form to process point cloud data. Compared with existing equivariant networks, our design is simple, lightweight, fast, and easy to be integrated with existing task-specific point cloud learning pipelines. We achieve these desirable properties by combining group convolutions and quotient representations. Specifically, we discretize SO(3) to finite groups for their simplicity while using SO(2) as the stabilizer subgroup to form spherical quotient feature fields to save computations. We also propose a permutation layer to recover SO(3) features from spherical features to preserve the capacity to distinguish rotations. Experiments show that our method achieves comparable or superior performance in various tasks, including object classification, pose estimation, and keypoint-matching, while consuming much less memory and running faster than existing work. The proposed method can foster the development of equivariant models for real-world applications based on point clouds.