论文标题

检测过程执行中的上下文感知偏差

Detecting Context-Aware Deviations in Process Executions

论文作者

Park, Gyunam, Benzin, Janik-Vasily, van der Aalst, Wil M. P.

论文摘要

偏差检测旨在检测偏差过程实例,例如医疗保健过程中的患者和制造过程中的产品。组织的业务流程在各种上下文情况下执行,例如,在医院的情况下,Covid-19的大流行,并且在汽车公司的情况下缺乏半导体芯片短缺。因此,上下文感知的偏差检测对于提供相关见解至关重要。但是,现有工作1)不提供整合各种环境的系统方式,2)在不使用大量现有偏差检测技术库的情况下量身定制为特定方法,而3)则不能分别区分正面和负面环境,这些正面和负面环境分别证明和反驳偏差。在这项工作中,我们提供了一个框架来弥合上述差距。我们已将提出的框架作为Web服务实施,可以扩展到各种上下文和偏差检测方法。我们通过使用255种不同的上下文场景进行实验来评估所提出的框架的有效性。

A deviation detection aims to detect deviating process instances, e.g., patients in the healthcare process and products in the manufacturing process. A business process of an organization is executed in various contextual situations, e.g., a COVID-19 pandemic in the case of hospitals and a lack of semiconductor chip shortage in the case of automobile companies. Thus, context-aware deviation detection is essential to provide relevant insights. However, existing work 1) does not provide a systematic way of incorporating various contexts, 2) is tailored to a specific approach without using an extensive pool of existing deviation detection techniques, and 3) does not distinguish positive and negative contexts that justify and refute deviation, respectively. In this work, we provide a framework to bridge the aforementioned gaps. We have implemented the proposed framework as a web service that can be extended to various contexts and deviation detection methods. We have evaluated the effectiveness of the proposed framework by conducting experiments using 255 different contextual scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源