论文标题

优化的稀疏近似逆SmoOther用于求解拉普拉斯线性系统

Optimized sparse approximate inverse smoothers for solving Laplacian linear systems

论文作者

He, Yunhui, Liu, Jun, Wang, Xiang-Sheng

论文摘要

在本文中,我们提出和分析了使用几何多机方法的新有效的稀疏近似逆(SPAI)SMOOTHOTH,以解决二维(2D)和三维(3D)Laplacian线性系统。局部傅立叶分析表明,我们提出的2D的SPAI更平滑,比[Bolten,M.,Huckle,T.K。所研究的最先进的SPAI更平滑的平滑因子都要小得多。和Kravvaritis,C.D.,2016年。多根方法的稀疏基质近似值。线性代数及其应用,502,pp.58-76。]。与加权Jacobi更平滑的3D案例相比,提出的SPAI更光滑可提供最佳的平滑因子。数值结果验证了我们的理论结论,并说明了我们提出的SPAI SMOOTHOTHE的高效和高效效率。这样的Spai Smoother具有固有的并行性的优势。实施我们提出的算法的MATLAB代码可在http://github.com/junliu2050/spai-mg-laplacian上在线公开获取。

In this paper we propose and analyze new efficient sparse approximate inverse (SPAI) smoothers for solving the two-dimensional (2D) and three-dimensional (3D) Laplacian linear system with geometric multigrid methods. Local Fourier analysis shows that our proposed SPAI smoother for 2D achieves a much smaller smoothing factor than the state-of-the-art SPAI smoother studied in [Bolten, M., Huckle, T.K. and Kravvaritis, C.D., 2016. Sparse matrix approximations for multigrid methods. Linear Algebra and its Applications, 502, pp.58-76.]. The proposed SPAI smoother for 3D cases provides smaller optimal smoothing factor than that of weighted Jacobi smoother. Numerical results validate our theoretical conclusions and illustrate the high-efficiency and high-effectiveness of our proposed SPAI smoothers. Such SPAI smoothers have the advantage of inherent parallelism. The MATLAB codes for implementing our proposed algorithms are publicly available online at http://github.com/junliu2050/SPAI-MG-Laplacian .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源