论文标题

贝叶斯深噪声神经网络的密度回归和不确定性定量

Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks

论文作者

Zhang, Daiwei, Liu, Tianci, Kang, Jian

论文摘要

深度神经网络(DNN)模型已在广泛的监督学习应用中实现了最先进的预测准确性。但是,准确量化DNN预测中的不确定性仍然是一项艰巨的任务。对于连续的结果变量,一个更困难的问题是估计预测密度函数,这不仅提供了预测不确定性的自然量化,而且还完全捕获了结果的随机变化。在这项工作中,我们提出了贝叶斯深噪声神经网络(B-Deepnoise),该网络通过将随机噪声变量从输出层扩展到所有隐藏层来概括标准的贝叶斯DNN。潜在的随机噪声将B-Deepnoise装置为具有近似高度复杂的预测分布的灵活性,并准确量化了预测性不确定性。对于后验计算,b-Deepnoise的独特结构导致封闭形式的Gibbs采样算法,该算法从模型参数的后部完整条件分布中进行了迭代模拟,从而避免了计算密集的Metropolis-Hastings方法。 B-Deepnoise的理论分析建立了预测分布的递归表示,并分解了相对于潜在参数的预测差异。我们根据基准回归数据集上的现有方法评估了B-Deepnoise,这在预测准确性,不确定性量化准确性和不确定性量化效率方面表明了其出色的性能。为了说明我们的方法在科学研究中的有用性,我们将B-Deepnoise用于预测青少年脑认知发展(ABCD)项目中神经影像特征的通用智能。

Deep neural network (DNN) models have achieved state-of-the-art predictive accuracy in a wide range of supervised learning applications. However, accurately quantifying the uncertainty in DNN predictions remains a challenging task. For continuous outcome variables, an even more difficult problem is to estimate the predictive density function, which not only provides a natural quantification of the predictive uncertainty, but also fully captures the random variation in the outcome. In this work, we propose the Bayesian Deep Noise Neural Network (B-DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable from the output layer to all hidden layers. The latent random noise equips B-DeepNoise with the flexibility to approximate highly complex predictive distributions and accurately quantify predictive uncertainty. For posterior computation, the unique structure of B-DeepNoise leads to a closed-form Gibbs sampling algorithm that iteratively simulates from the posterior full conditional distributions of the model parameters, circumventing computationally intensive Metropolis-Hastings methods. A theoretical analysis of B-DeepNoise establishes a recursive representation of the predictive distribution and decomposes the predictive variance with respect to the latent parameters. We evaluate B-DeepNoise against existing methods on benchmark regression datasets, demonstrating its superior performance in terms of prediction accuracy, uncertainty quantification accuracy, and uncertainty quantification efficiency. To illustrate our method's usefulness in scientific studies, we apply B-DeepNoise to predict general intelligence from neuroimaging features in the Adolescent Brain Cognitive Development (ABCD) project.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源