论文标题
PAC-NET:归纳转移学习的模型修剪方法
PAC-Net: A Model Pruning Approach to Inductive Transfer Learning
论文作者
论文摘要
归纳转移学习旨在通过利用源任务中的预训练模型来从少量的培训数据中学习目标任务。大多数涉及大规模深度学习模型的策略采用预先训练的模型和对目标任务进行微调的初始化。但是,当使用过度参数化模型时,我们通常可以在不牺牲源任务的准确性的情况下修剪模型。这促使我们采用模型修剪来通过深度学习模型进行转移学习。在本文中,我们提出了PAC-NET,这是一种简单而有效的方法,用于基于修剪的转移学习。 PAC-NET由三个步骤组成:修剪,分配和校准(PAC)。这些步骤背后的主要思想是确定源任务的基本权重,通过更新基本权重来微调源任务,然后通过更新剩余的冗余权重来校准目标任务。在各种广泛的归纳转移学习实验集中,我们表明我们的方法通过很大的边距实现了最先进的性能。
Inductive transfer learning aims to learn from a small amount of training data for the target task by utilizing a pre-trained model from the source task. Most strategies that involve large-scale deep learning models adopt initialization with the pre-trained model and fine-tuning for the target task. However, when using over-parameterized models, we can often prune the model without sacrificing the accuracy of the source task. This motivates us to adopt model pruning for transfer learning with deep learning models. In this paper, we propose PAC-Net, a simple yet effective approach for transfer learning based on pruning. PAC-Net consists of three steps: Prune, Allocate, and Calibrate (PAC). The main idea behind these steps is to identify essential weights for the source task, fine-tune on the source task by updating the essential weights, and then calibrate on the target task by updating the remaining redundant weights. Under the various and extensive set of inductive transfer learning experiments, we show that our method achieves state-of-the-art performance by a large margin.