论文标题
SeaTrans:通过变压器学习细分辅助诊断模型
SeATrans: Learning Segmentation-Assisted diagnosis model via Transformer
论文作者
论文摘要
在临床上,病变/组织的准确注释可以显着促进疾病诊断。例如,对眼底图像的视盘/杯/杯(OD/OC)的分割将有助于青光眼的诊断,皮肤镜面图像上皮肤病变的分割有助于黑色素瘤诊断等。随着深度学习技术的发展,多种方法可以证明病情/组织/组织/组织/组织/组织的群体分裂均可诊断。但是,现有方法是有限的,因为它们只能捕获图像中的静态区域相关性。受视觉变压器的全球和动态性质的启发,在本文中,我们提出了分割辅助诊断变压器(SEATRANS),以将分割知识转移到疾病诊断网络中。具体而言,我们首先提出了一种不对称的多尺度相互作用策略,以将每个单个低级诊断功能与多尺度分割特征相关联。然后,采用了一种称为海块的有效策略,以通过相关的分割特征使诊断特征变得生命。为了模拟分割诊断的相互作用,海块首先根据分段信息通过编码器嵌入诊断功能,然后通过解码器将嵌入的嵌入回到诊断功能空间中。实验结果表明,有关几种疾病诊断任务的海洋侵蚀超过了广泛的最新(SOTA)分割辅助诊断方法。
Clinically, the accurate annotation of lesions/tissues can significantly facilitate the disease diagnosis. For example, the segmentation of optic disc/cup (OD/OC) on fundus image would facilitate the glaucoma diagnosis, the segmentation of skin lesions on dermoscopic images is helpful to the melanoma diagnosis, etc. With the advancement of deep learning techniques, a wide range of methods proved the lesions/tissues segmentation can also facilitate the automated disease diagnosis models. However, existing methods are limited in the sense that they can only capture static regional correlations in the images. Inspired by the global and dynamic nature of Vision Transformer, in this paper, we propose Segmentation-Assisted diagnosis Transformer (SeATrans) to transfer the segmentation knowledge to the disease diagnosis network. Specifically, we first propose an asymmetric multi-scale interaction strategy to correlate each single low-level diagnosis feature with multi-scale segmentation features. Then, an effective strategy called SeA-block is adopted to vitalize diagnosis feature via correlated segmentation features. To model the segmentation-diagnosis interaction, SeA-block first embeds the diagnosis feature based on the segmentation information via the encoder, and then transfers the embedding back to the diagnosis feature space by a decoder. Experimental results demonstrate that SeATrans surpasses a wide range of state-of-the-art (SOTA) segmentation-assisted diagnosis methods on several disease diagnosis tasks.