论文标题
带电的粒子运动在磁性单极的球形对称分布中
Charged Particle Motion in Spherically Symmetric Distributions of Magnetic Monopoles
论文作者
论文摘要
带电粒子在磁性单极的球形对称分布中的经典运动方程可以转换为线性方程系统,从而提供了一种集成性。对于单个单极,该解决方案很久以前由Poincaré提供。在单孔的均匀分布的情况下,可以用抛物线缸函数表示溶液(本质上是倒谐波振荡器的特征函数)。该解决方案与最近对非缔合恒星产品的研究,扭曲的泊松结构的符号升力以及电荷的流体以及电荷的等离子体。
The classical equations of motion of a charged particle in a spherically symmetric distribution of magnetic monopoles can be transformed into a system of linear equations, thereby providing a type of integrability. In the case of a single monopole, the solution was given long ago by Poincaré. In the case of a uniform distribution of monopoles the solution can be expressed in terms of parabolic cylinder functions (essentially the eigenfunctions of an inverted harmonic oscillator). This solution is relevant to recent studies of nonassociative star products, symplectic lifts of twisted Poisson structures and fluids and plasmas of electric and magnetic charges.