论文标题

DCASE 2022挑战任务2:机器状况监控应用域概括技术的描述和讨论

Description and Discussion on DCASE 2022 Challenge Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Techniques

论文作者

Dohi, Kota, Imoto, Keisuke, Harada, Noboru, Niizumi, Daisuke, Koizumi, Yuma, Nishida, Tomoya, Purohit, Harsh, Endo, Takashi, Yamamoto, Masaaki, Kawaguchi, Yohei

论文摘要

我们介绍了DCASE 2022挑战任务结果的任务描述和讨论2:``无监督的异常声音检测(ASD)用于机器状况监控应用域通用技术''。域移动是ASD系统应用的关键问题。由于域移位可以改变数据的声学特性,因此在源域中训练的模型对目标域的性能较差。在DCASE 2021挑战任务2中,我们组织了一个ASD来处理域移动的任务。在此任务中,假定已知域移位的发生。但是,实际上,可能不会给出每个样本的域,并且域移位可能会隐含。在2022年的任务2中,我们专注于域泛化技术,这些技术检测异常,无论域移动如何。具体而言,每个样本的域在测试数据中不给出,所有域仅允许一个阈值。对31个团队的81项提交的分析揭示了两种非凡类型的域概括技术:1)基于域混合域的方法,这些方法获得了广义表示,并且2)基于域分类的方法,这些方法明确或隐含地对不同的域进行分类以改善每个域的检测性能。

We present the task description and discussion on the results of the DCASE 2022 Challenge Task 2: ``Unsupervised anomalous sound detection (ASD) for machine condition monitoring applying domain generalization techniques''. Domain shifts are a critical problem for the application of ASD systems. Because domain shifts can change the acoustic characteristics of data, a model trained in a source domain performs poorly for a target domain. In DCASE 2021 Challenge Task 2, we organized an ASD task for handling domain shifts. In this task, it was assumed that the occurrences of domain shifts are known. However, in practice, the domain of each sample may not be given, and the domain shifts can occur implicitly. In 2022 Task 2, we focus on domain generalization techniques that detects anomalies regardless of the domain shifts. Specifically, the domain of each sample is not given in the test data and only one threshold is allowed for all domains. Analysis of 81 submissions from 31 teams revealed two remarkable types of domain generalization techniques: 1) domain-mixing-based approach that obtains generalized representations and 2) domain-classification-based approach that explicitly or implicitly classifies different domains to improve detection performance for each domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源