论文标题
线性时间逻辑的SAHLQVIST式对应定理
A Sahlqvist-style Correspondence Theorem for Linear-time Temporal Logic
论文作者
论文摘要
模态逻辑的语言能够在Kripke帧上表达一阶条件。 Henrik Sahlqvist的经典结果确定了一类重要的模态公式,可以以有效的,算法的方式找到一阶条件或Sahlqvist通讯员的一阶条件。最近的作品已成功将这种经典结果扩展到更复杂的模态语言。在本文中,我们追求类似的行,并为线性时间逻辑(LTL)开发SAHLQVIST式通讯定理,该定理是用于时间规范的最广泛使用的正式语言之一。 LTL使用专用的临时操作员下一个x和u直到u扩展了基本模态逻辑的语法。结果,具有一阶通讯的一系列公式的复杂性也相应增加。在本文中,我们确定了使用模态运算符F,G,X和U构建的一类重要的LTL SAHLQVIST公式。本文的主要结果是证明LTL SAHLQVIST公式对一阶语言可定义的条件的对应关系。
The language of modal logic is capable of expressing first-order conditions on Kripke frames. The classic result by Henrik Sahlqvist identifies a significant class of modal formulas for which first-order conditions -- or Sahlqvist correspondents -- can be find in an effective, algorithmic way. Recent works have successfully extended this classic result to more complex modal languages. In this paper, we pursue a similar line and develop a Sahlqvist-style correspondence theorem for Linear-time Temporal Logic (LTL), which is one of the most widely used formal languages for temporal specification. LTL extends the syntax of basic modal logic with dedicated temporal operators Next X and Until U . As a result, the complexity of the class of formulas that have first-order correspondents also increases accordingly. In this paper, we identify a significant class of LTL Sahlqvist formulas built by using modal operators F , G, X, and U . The main result of this paper is to prove the correspondence of LTL Sahlqvist formulas to frame conditions that are definable in first-order language.