论文标题

马尔可夫决策过程下的模型不确定性

Markov Decision Processes under Model Uncertainty

论文作者

Neufeld, Ariel, Sester, Julian, Šikić, Mario

论文摘要

我们在离散时间无限的地平线设置下引入了模型不确定性下的马尔可夫决策问题的一般框架。通过提供动态的编程原则,我们获得了局部到全球范式,即解决局部范围,即一个时间步骤的强大优化问题会导致全局(即无限时步)的优化器(即强大的随机时间阶段)可靠的随机最佳控制问题,以及相应的最差例态态度测量。此外,我们将此框架应用于涉及标准普尔500数据的投资组合优化。我们提出了两种不同类型的歧义集。一个由wasserstein-ball围绕经验度量给出的完全数据驱动,第二个是由多元正常分布的参数集来描述的,其中参数的相应不确定性集是从数据中估算的。事实证明,在市场波动或看跌的情况下,来自相应的强大优化问题的最佳投资组合策略胜过没有模型不确定性的策略,表明将模型不确定性考虑在内的重要性。

We introduce a general framework for Markov decision problems under model uncertainty in a discrete-time infinite horizon setting. By providing a dynamic programming principle we obtain a local-to-global paradigm, namely solving a local, i.e., a one time-step robust optimization problem leads to an optimizer of the global (i.e. infinite time-steps) robust stochastic optimal control problem, as well as to a corresponding worst-case measure. Moreover, we apply this framework to portfolio optimization involving data of the S&P 500. We present two different types of ambiguity sets; one is fully data-driven given by a Wasserstein-ball around the empirical measure, the second one is described by a parametric set of multivariate normal distributions, where the corresponding uncertainty sets of the parameters are estimated from the data. It turns out that in scenarios where the market is volatile or bearish, the optimal portfolio strategies from the corresponding robust optimization problem outperforms the ones without model uncertainty, showcasing the importance of taking model uncertainty into account.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源