论文标题

通过共同建模公司网络和对话来预测公司风险

Predicting Corporate Risk by Jointly Modeling Company Networks and Dialogues in Earnings Conference Calls

论文作者

Sang, Yunxin, Bao, Yang

论文摘要

收入电话会议是波动性预测的重要信息事件,这对于财务风险管理和资产定价至关重要。尽管最近的一些波动性预测模型利用了电话会议的文本内容,但现有文献中几乎忽略了电话会议和公司关系的对话结构。为了弥合这一差距,我们提出了一种新模型,称为“时间虚拟图神经网络(TVGNN)”,以通过共同建模会议通话对话和公司网络进行波动预测。我们的模型与现有模型不同。首先,我们建议通过编码位置,话语,说话者角色和Q \&A细分来利用更多的对话结构。其次,我们建议通过扩展封闭式复发单元(GRU)来编码市场国家的波动预测。第三,我们提出了一种构建临时公司网络的新方法,其中信息只能从暂时的之前流到连续的节点,并扩展图形注意网络(GAT)以建模公司关系。我们从2008年到2019年收集了S \&P500公司的电话会议笔录,并构建了电话会议对话的数据集,并提供有关对话结构和公司网络的其他信息。数据集中的经验结果证明了我们模型比竞争基准的优势在波动率预测中。我们还进行了补充分析,以检查模型的关键组成部分和解释性的有效性。

Earnings conference calls are significant information events for volatility forecasting, which is essential for financial risk management and asset pricing. Although some recent volatility forecasting models have utilized the textual content of conference calls, the dialogue structures of conference calls and company relationships are almost ignored in extant literature. To bridge this gap, we propose a new model called Temporal Virtual Graph Neural Network (TVGNN) for volatility forecasting by jointly modeling conference call dialogues and company networks. Our model differs from existing models in several important ways. First, we propose to exploit more dialogue structures by encoding position, utterance, speaker role, and Q\&A segments. Second, we propose to encode the market states for volatility forecasting by extending the Gated Recurrent Units (GRU). Third, we propose a new method for constructing temporal company networks in which the messages can only flow from temporally preceding to successive nodes, and extend the Graph Attention Networks (GAT) for modeling company relationships. We collect conference call transcripts of S\&P500 companies from 2008 to 2019, and construct a dataset of conference call dialogues with additional information on dialogue structures and company networks. Empirical results on our dataset demonstrate the superiority of our model over competitive baselines for volatility forecasting. We also conduct supplementary analyses to examine the effectiveness of our model's key components and interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源