论文标题
半线的自由schrödinger场理论间隔的纠缠熵
Entanglement entropies of an interval in the free Schrödinger field theory on the half line
论文作者
论文摘要
我们研究了在有限的密度和零温度下,靠近半线边界的间隔的纠缠熵,并具有neumann或dirichlet边界条件。它们是费米动量和间隔长度的乘积给出的无量纲参数的有限函数。纠缠熵显示出振荡行为,与整个线的间隔不同。这种行为与纠缠点半线上平均粒子密度的弗里德尔振荡有关。我们发现,在无量纲参数的大小值的机制中,纠缠熵的扩展的分析表达式。他们与数值获得的曲线显示出了显着的一致性。该分析扩展到了由其整数Lifshitz指数标记的自由费米斯Lifshitz模型的家族,其奇偶校验决定了纠缠熵的特性。还探索了当地电荷运营商的累积物和基础内核的夏顿规范。
We study the entanglement entropies of an interval adjacent to the boundary of the half line for the free fermionic spinless Schrödinger field theory at finite density and zero temperature, with either Neumann or Dirichlet boundary conditions. They are finite functions of the dimensionless parameter given by the product of the Fermi momentum and the length of the interval. The entanglement entropy displays an oscillatory behaviour, differently from the case of the interval on the whole line. This behaviour is related to the Friedel oscillations of the mean particle density on the half line at the entangling point. We find analytic expressions for the expansions of the entanglement entropies in the regimes of small and large values of the dimensionless parameter. They display a remarkable agreement with the curves obtained numerically. The analysis is extended to a family of free fermionic Lifshitz models labelled by their integer Lifshitz exponent, whose parity determines the properties of the entanglement entropies. The cumulants of the local charge operator and the Schatten norms of the underlying kernels are also explored.