论文标题
ZFC没有电力集II:反射击退
ZFC without power set II: Reflection strikes back
论文作者
论文摘要
ZFC理论暗示了以下方案,对于每个基本$δ$,我们都可以在没有终端节点的任何可定义关系上做出$δ$许多依赖性选择。第一作者弗里德曼(Friedman)和卡诺维(Kanovei)构建了一个ZFC $^ - $(无功率集的ZFC)的型号,其中最大的Cardinal $ω$,该原理以$ω$多数选择而失败。在本文中,我们通过考虑大型适当类的概念来研究ZFC $^ - $的依赖选择原则的失败。如果适当的类别向每个非零序中跃升,则据说合适的类是很大的。 我们将看到,如果人们假设任何任意设置长度的依赖选择方案,那么每个适当的班级的确很大。但是,通过在Zarach的工作基础上,我们通过生产ZFC $^ - $的模型,并提供不大的类别的ZFC $^ - $,为分离各种长度的相关选择方案提供了一个通用框架。然后,我们通过产生ZFC $^ - $的模型来扩展早期结果,其中有许多红衣主教,但是长度$ω$的依赖选择方案仍然失败。 最后,第二作者证明,ZFC $^ - $的模型不能具有非平凡的,Cofinal,基本的自我插件,von-Neumann层次结构的存在直至其关键点。我们回答了第二作者提出的一个相关问题,证明存在这种嵌入的存在并不需要暗示冯·尼曼层次结构的任何非平凡片段的存在。特别是,在这种情况下,$ \ Mathcal {p}(ω)$可以是适当的类。
The theory ZFC implies the scheme that for every cardinal $δ$ we can make $δ$ many dependent choices over any definable relation without terminal nodes. Friedman, the first author, and Kanovei constructed a model of ZFC$^-$ (ZFC without power set) with largest cardinal $ω$ in which this principle fails for $ω$ many choices. In this article we study failures of dependent choice principles over ZFC$^-$ by considering the notion of big proper classes. A proper class is said to be big if it surjects onto every non-zero ordinal. We shall see that if one assumes the scheme of dependent choices of any arbitrary set length then every proper class is indeed big. However, by building on work of Zarach, we provide a general framework for separating dependent choice schemes of various lengths by producing models of ZFC$^-$ with proper classes that are not big. Using a similar idea, we then extend the earlier result by producing a model of ZFC$^-$ in which there are unboundedly many cardinals but the scheme of dependent choices of length $ω$ still fails. Finally, the second author has proven that a model of ZFC$^-$ cannot have a non-trivial, cofinal, elementary self-embedding for which the von-Neumann hierarchy exists up to its critical point. We answer a related question posed by the second author by showing that the existence of such an embedding need not imply the existence of any non-trivial fragment of the von-Neumann hierarchy. In particular, that in such a situation $\mathcal{P}(ω)$ can be a proper class.