论文标题

知识图构建及其在放射科医生的自动放射学报告中的应用

Knowledge Graph Construction and Its Application in Automatic Radiology Report Generation from Radiologist's Dictation

论文作者

Kale, Kaveri, Bhattacharyya, Pushpak, Shetty, Aditya, Gune, Milind, Shrivastava, Kush, Lawyer, Rustom, Biswas, Spriha

论文摘要

从传统上讲,放射科医生准备诊断笔记并与转录师共享。然后,抄写员准备了指参考票据的初步格式报告,最后,放射科医生审查了报告,纠正错误并签字。该工作流程在报告中导致重大延迟和错误。在当前的研究工作中,我们专注于NLP技术(例如信息提取(IE)和特定领域知识图)(KG)的应用,以自动从放射科医生的命令中生成放射学报告。本文通过从现有的自由文本放射学报告中提取信息来重点介绍每个器官的KG构造。我们开发了一种信息提取管道,将基于规则的,基于模式的和基于词典的技术与词汇语义特征相结合,以提取实体和关系。可以从kgs访问简单的丢失信息,以产生病理描述,并因此是放射学报告。使用语义相似性指标评估了生成的病理描​​述,该指标与金标准病理描述显示了97%的相似性。另外,我们的分析表明,我们的IE模块的性能要比放射学领域的OpenIE工具更好。此外,我们还提供了放射科医生的手动定性分析,该分析表明80-85%的生成报告是正确编写的,其余的部分是正确的。

Conventionally, the radiologist prepares the diagnosis notes and shares them with the transcriptionist. Then the transcriptionist prepares a preliminary formatted report referring to the notes, and finally, the radiologist reviews the report, corrects the errors, and signs off. This workflow causes significant delays and errors in the report. In current research work, we focus on applications of NLP techniques like Information Extraction (IE) and domain-specific Knowledge Graph (KG) to automatically generate radiology reports from radiologist's dictation. This paper focuses on KG construction for each organ by extracting information from an existing large corpus of free-text radiology reports. We develop an information extraction pipeline that combines rule-based, pattern-based, and dictionary-based techniques with lexical-semantic features to extract entities and relations. Missing information in short dictation can be accessed from the KGs to generate pathological descriptions and hence the radiology report. Generated pathological descriptions evaluated using semantic similarity metrics, which shows 97% similarity with gold standard pathological descriptions. Also, our analysis shows that our IE module is performing better than the OpenIE tool for the radiology domain. Furthermore, we include a manual qualitative analysis from radiologists, which shows that 80-85% of the generated reports are correctly written, and the remaining are partially correct.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源