论文标题

从未标记的图像中学习与任务无关的游戏状态表示

Learning Task-Independent Game State Representations from Unlabeled Images

论文作者

Trivedi, Chintan, Makantasis, Konstantinos, Liapis, Antonios, Yannakakis, Georgios N.

论文摘要

自我监督的学习(SSL)技术已被广泛用于从高维复杂数据中学习紧凑而有益的表示。在许多计算机视觉任务(例如图像分类)中,此类方法获得了超过监督学习方法的最新结果。在本文中,我们研究是否可以利用SSL方法来学习游戏准确的游戏状态表示的任务,如果是的,则可以在何种程度上学习。为此,我们从三个不同的3D游戏中收集了游戏镜头和游戏内部状态的相应序列:Vizdoom,Carla Racing Simulator和Google Research Football Eniversion。我们仅使用原始帧训练图像编码器,使用三种广泛使用的SSL算法,然后尝试从学习的表示形式中恢复内部状态变量。与预训练的基线模型(例如ImageNet)相比,我们在所有三场比赛中的结果都显示出SSL表示与游戏内部状态之间的相关性明显更高。这样的发现表明,基于SSL的视觉编码器可以产生一般的一般 - 不是针对特定任务量身定制的 - 但仅从游戏像素信息中提供了信息丰富的游戏表示。这些表示形式又可以构成增强游戏中下游学习任务(包括游戏玩法,内容生成和玩家建模)的基础。

Self-supervised learning (SSL) techniques have been widely used to learn compact and informative representations from high-dimensional complex data. In many computer vision tasks, such as image classification, such methods achieve state-of-the-art results that surpass supervised learning approaches. In this paper, we investigate whether SSL methods can be leveraged for the task of learning accurate state representations of games, and if so, to what extent. For this purpose, we collect game footage frames and corresponding sequences of games' internal state from three different 3D games: VizDoom, the CARLA racing simulator and the Google Research Football Environment. We train an image encoder with three widely used SSL algorithms using solely the raw frames, and then attempt to recover the internal state variables from the learned representations. Our results across all three games showcase significantly higher correlation between SSL representations and the game's internal state compared to pre-trained baseline models such as ImageNet. Such findings suggest that SSL-based visual encoders can yield general -- not tailored to a specific task -- yet informative game representations solely from game pixel information. Such representations can, in turn, form the basis for boosting the performance of downstream learning tasks in games, including gameplaying, content generation and player modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源