论文标题
基于位置的Twitter过滤用于创建印尼本地语言的低资源语言数据集
Location-based Twitter Filtering for the Creation of Low-Resource Language Datasets in Indonesian Local Languages
论文作者
论文摘要
Twitter包含来自现实世界中的大量语言数据。我们检查了Twitter的低资源语言(例如本地印尼语)的用户生成的内容。为了使NLP在印度尼西亚语中工作,它必须考虑当地方言,地理环境和区域文化影响印尼语言。本文确定了我们在构建本地印尼NLP数据集时面临的问题。此外,我们正在开发一个用于创建,收集和分类NLP本地印尼数据集的框架。使用Twitter的地理位置工具自动注释。
Twitter contains an abundance of linguistic data from the real world. We examine Twitter for user-generated content in low-resource languages such as local Indonesian. For NLP to work in Indonesian, it must consider local dialects, geographic context, and regional culture influence Indonesian languages. This paper identifies the problems we faced when constructing a Local Indonesian NLP dataset. Furthermore, we are developing a framework for creating, collecting, and classifying Local Indonesian datasets for NLP. Using twitter's geolocation tool for automatic annotating.