论文标题
分裂的超级格拉斯曼人的超级超级组和数量
Splitting quasireductive supergroups and volumes of supergrassmannians
论文作者
论文摘要
我们介绍了Quasireducitve超组的分裂亚组的概念,并解释其意义。对于$ gl(m | n)$,$ q(n)$和缺陷一个基本的经典超级组,我们给出了明确的拆分子组。我们进一步证明它们是最小的结合,除非在$ gl(m | n)$案例中仍然是猜想。证明的关键工具是计算复杂超级草的数量,这本身就是感兴趣的。
We introduce the notion of splitting subgroups of quasireducitve supergroups, and explain their significance. For $GL(m|n)$, $Q(n)$, and defect one basic classical supergroups, we give explicit splitting subgroups. We further prove they are minimal up to conjugacy, except in the $GL(m|n)$ case where it remains a conjecture. A key tool in the proof is the computation of the volumes of complex supergrassmannians, which is of interest in its own right.