论文标题

部分可观测时空混沌系统的无模型预测

Sample generation for the spin-fermion model using neural networks

论文作者

Stratis, Georgios, Weinberg, Phillip, Imbiriba, Tales, Closas, Pau, Feiguin, Adrian E.

论文摘要

杂种量子古典模型(例如双重交换汉密尔顿)的量子蒙特卡洛模拟需要计算每个步骤的量子自由度状态的密度。不幸的是,确切的对角线化的计算复杂性增长了$ \ Mathcal {o}(n^3)$作为系统尺寸$ n $的函数,使其对任何现实的系统都非常昂贵。我们考虑利用数据驱动的方法,即神经网络,以替换确切的对角步骤,以加快样本的生成。我们探索了一个模型,该模型可以学习每种旋转配置的自由能,以及第二个学习哈密顿特征值的模型。我们通过利用哈密顿的对称性来实施数据增强,以人为地扩大我们的训练集并通过评估几个热力学数量来对不同模型进行基准测试。尽管此处考虑的所有模型在一维情况下都表现出色,但只有输出特征值的神经网络才能在两个维度上捕获正确的行为。我们与神经网络的模型不可知的形式结合使用的体系结构的简单性可以使快速样本生成,而无需研究人员的干预。

Quantum Monte-Carlo simulations of hybrid quantum-classical models such as the double exchange Hamiltonian require calculating the density of states of the quantum degrees of freedom at every step. Unfortunately, the computational complexity of exact diagonalization grows $ \mathcal{O} (N^3)$ as a function of the system's size $ N $, making it prohibitively expensive for any realistic system. We consider leveraging data-driven methods, namely neural networks, to replace the exact diagonalization step in order to speed up sample generation. We explore a model that learns the free energy for each spin configuration and a second one that learns the Hamiltonian's eigenvalues. We implement data augmentation by taking advantage of the Hamiltonian's symmetries to artificially enlarge our training set and benchmark the different models by evaluating several thermodynamic quantities. While all models considered here perform exceedingly well in the one-dimensional case, only the neural network that outputs the eigenvalues is able to capture the right behavior in two dimensions. The simplicity of the architecture we use in conjunction with the model agnostic form of the neural networks can enable fast sample generation without the need of a researcher's intervention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源