论文标题
高维度正规化回归估计器的通用性
Universality of regularized regression estimators in high dimensions
论文作者
论文摘要
凸高斯高斯最低定理(CGMT)已成为一种突出的理论工具,用于分析所谓的高维高比例状态中各种统计估计量的精确随机行为,其中样本大小和信号维度是相同顺序的。然而,对现有CGMT机械的良好认识的局限性基于其严格要求设计矩阵的确切高斯性,因此,在各种重要统计模型中,获得了所获得的精确的高维渐近线,在很大程度上是一种特定的高斯理论。 本文为与CGMT机械特别兼容的广泛正规回归估计器提供了结构性通用框架。特别是,我们表明,有足够的$ \ ell_ \ infty $绑定了回归估算器$ \hatμ_a$,可以通过CGMT以$ \hatμg$(根据标准的高斯设计$ g $)检测到可以通过CGMT检测到的任何“结构性属性”。作为概念的证明,我们在正规回归估算器的三个关键示例中演示了我们的新通用框架:山脊,套索和正则稳健回归估计器,其中证明了风险渐近性的新普遍性和/或分布回归估计器和其他相关数量的分布。作为LASSO普遍性结果的主要统计含义,我们在一般设计和误差分布下使用自由度调整后的DEBIASO LASSO验证推理程序。我们还提供了反例,表明正则化回归估计器的通用属性不会扩展到一般的各向同性设计。
The Convex Gaussian Min-Max Theorem (CGMT) has emerged as a prominent theoretical tool for analyzing the precise stochastic behavior of various statistical estimators in the so-called high dimensional proportional regime, where the sample size and the signal dimension are of the same order. However, a well recognized limitation of the existing CGMT machinery rests in its stringent requirement on the exact Gaussianity of the design matrix, therefore rendering the obtained precise high dimensional asymptotics largely a specific Gaussian theory in various important statistical models. This paper provides a structural universality framework for a broad class of regularized regression estimators that is particularly compatible with the CGMT machinery. In particular, we show that with a good enough $\ell_\infty$ bound for the regression estimator $\hatμ_A$, any `structural property' that can be detected via the CGMT for $\hatμ_G$ (under a standard Gaussian design $G$) also holds for $\hatμ_A$ under a general design $A$ with independent entries. As a proof of concept, we demonstrate our new universality framework in three key examples of regularized regression estimators: the Ridge, Lasso and regularized robust regression estimators, where new universality properties of risk asymptotics and/or distributions of regression estimators and other related quantities are proved. As a major statistical implication of the Lasso universality results, we validate inference procedures using the degrees-of-freedom adjusted debiased Lasso under general design and error distributions. We also provide a counterexample, showing that universality properties for regularized regression estimators do not extend to general isotropic designs.